
CS160 - Assignment 3

Due: Friday Oct. 9, 6pm

For the next step in our IR system we’re going to be adding functional-
ity to do ranked retieval using vector space models (i.e. TF-IDF). Given
a query, the system will return a ranked set of documents using the cosine
similarity between the query term vector and the document term vectors.
For the query vector representation, we will always just use term frequeny
counts. For the document representation, we will support a number of nor-
malization/weighting techniques that we have discussed, specifically: term
log frequency, term boolean frequency, inverse document frequency weight-
ing and cosine normalization. Your index should be able to be built with a
combination of these, depending on user specifications.

Although we will be modifying the data stored in the index, our new system
will be able to support BOTH boolean and ranked retrieval at the same
time. Any query that contains “AND”, “OR” or “!”, will be treated like a
boolean query and return the boolean query results. Maintaining this is not
challenging, but I want to make it explicit so that you keep it in the back of
your mind as you are modifying the code. For this assignment I am giving
you a fair amount of freedom with how you implement this functionality.
The main requirements are that you follow the minimal specification below,
that your code work :) and that it works efficiently.

We will be building on top of the code that we used last time. I have provided
a working version of the code from last time at “/common/cs/cs160/assign3”,
however, you are welcome to extend your solution to assignment 2. If you
decide to use your own code, you will be held accountable for any mis-
takes/issues from assignment 2 that may cause interactions with the current
assignment.

You may work with a partner if you’d like. You MUST both be there when
you are working on the assignment (either coding or writeup) and you may

1



only use one computer, i.e. I want you to do pair programming. When you
submit your write-up, make sure both people’s names are in there.

Before starting this assignment read through the entire document. Al-
though I’ve given you more freedom this time, certain interfaces are made
explicit to both assist you in developing your code and to make my life easier
for testing. At the end I’ve included some helpful hints and tools that may
be useful. If there is any ambiguity or question about what you are being
asked to do, ask the me to clarify.

1. What to implement/changes

Below are descriptions of the classes you must implement. In each case,
I have included a skeleton of the class in the code I provided you and
have defined which public methods you must define. Since you may
be reusing your own code, for pre-existing classes (e.g. PostingsList)
I’ve explicity listed the additional functions that you must add.

(a) Handling different query results: QueryResult.java

You don’t have to do anything here, but take a look at this new
interface. This allows us to support multiple different types of
query results from the system (in our case, the ranked result
and the result from a boolean query). Two of our classes will
implement this interface.

(b) Posting list representation: PostingsList.java

I have provided a postings list implementation for a boolean in-
dex. You will need to change this to support functionality for
doing ranked retrieval. The following MUST be changed, but
you may also need to add other functions not listed here:

• Rather than just occuring or not occuring, you must modify
your postings list representation to support weights associ-
ated with each entry. For example with no normalization,
this would represent the term frequency of a term in a doc-
ument.

• Your other functions (not, andMerge and orMerge) should
still work appropriately for boolean queries.

• PostingsList now implements QueryResult. The only major
change to our existing code is to add the

public double[] getScores()

2



method. This method should just return 1.0 for the score of
each document.

(c) Ranking query results: VectorResult

For a boolean query, the result is a PostingsList. For a ranked
query, the result is a VectorResult. This class stores the results of
our ranked query, which is a ranked list of the document ids and
the score associated with each document. As with PostingsList,
VectorResult implements the QueryResult interface.

(d) Index generation and query processing: Index.java

As with boolean queries, our Index class will generate and store
the index as well as handle queries to the index.

• Modify the index construction to keep track of term frequen-
cies.

• I’ve added enums in the class that define our different nor-
malization techniques. These are used to specify how we
should normalize our document counts in our index when it
is being constructed.

• To support these normalization techniques, the constructor
has been modified.

• You’ll need to modify your index construction to support the
different normalization techniques. This will require some
cooperation with the PostingsList class so you may need to
add functionality in multiple places.

• Implement the rankedQuery method, which issues a ranked
query to our index:

public VectorResult rankedQuery(String textQuery)

. This is should be roughly equivalent to the functionality
in Figure 6.14, except we will return a full sorted list of re-
sults. Note that the resulting VectorResult must be sorted
in decreasing order by score (ties should be broken by do-
cID, with lower docIDs occuring before/earlier than higher
docIDs). You can enforce this sorted order either in this
method or in the VectorResult class, but either way, it must
be efficient, that is only sort once.

(e) Querying the index: Search.java

The class BooleanSearch has been changed to Search. There is
now added functionality for ranked queries (which are the default)

3



to detect boolean queries (as described above) and issue those
queries to the index. You’ll also notice the index construction
now passes in the normalization parameters. You don’t need to
make any changes to this class, but it is provided as an interface
into the index and for you to see how the index is created and
used.

2. Hints/Comments

• If you’re unsure about the normalization techniques, look at table
6.7 in the book.

• Your code should be efficient! It will take a little longer to create
the index and to answer ranked queries than before, but it should
all still happen relatively quickly.

• When applying the normalization techniques, the easiest way to
do it is to first create the index with just term frequencies. Then,
for each of the normalization steps, make a pass over the index
and modify the weights.

• The length normalization does NOT normalize the postings list
length; it normalizes the document lengths. This is a little tricky
to do, but look at the book/notes and think about how you might
do this.

• We are NOT doing any normalization on the query. For the
query, we’re just using term frequencies.

• Note that there is a natural ordering to apply the normalization
techniques (and make sure that the last thing you do is the length
normalization!).

• Use natural logs for all of your logs (this is the default for java)

• Make sure you don’t change any methods of the existing code.
We want to be able to issue both boolean and ranked queries
using our predefined interfaces.

• It can be useful to make a sample test set to check your results.
Try as best as possible to do incremental changes and then test to
make sure that functionality is working before adding additional
functionality.

• The amount of code actually written for this assignment won’t
be a lot. The hardest part will be figuring out what to change. I
would encourage you to spend an hour mapping out how you plan

4



to modify the existing implementation before actually starting
coding. This will make your life much simpler in the long run
and save you time.

3. What to turn in and how to turn it in

• What to turn in:

– A “jar” file of your code, which should contain all classes re-
quired to get your code working, including the original files
I provided. See the assignment 1 writeup for details on cre-
ating a jar file. Make sure that you check the box to include
the source in your jar.

– A text file with the following information:

(a) Name(s)

(b) What was the most challenging part of this assignment?

(c) How long did it take you?

(d) When did you start?

• How to turn it in

See the course web side for details (it’s the same procedure as
last time).

5


