
CS30 - Assignment 7
Part A: Due at the beginning of lab, Wednesday March 25th

Part B: Due Friday Marth 27th, at 6pm

http://xkcd.com/948/

Before Spring Break, we began to discuss classes. As a reference for this assignment, please see
chapters 12, 13 and 14 of “How to think like a Computer Scientist” about classes. For this
assignment, you’re going to be writing your own class!

Read through the entire handout before you start coding. This assignment involves two parts: 1)
designing and implementing your own class and then 2) using your class to write a small program.

Specifications

You are to design and implement a class of some kind - like the “Person” class (or Rectangle, Stack
and Queue). Your class should include the following pieces:

• an initialization method

__init__

• an str function

__str__

• a method with at least two optional arguments (in combination with one or more regular
arguments)

1

• 4 additional methods inside the class which meet the following constraints:

– at least two of these methods must be nontrivial methods: 6 lines of code or more

– at least one of these methods must involve a loop

– at least one of these functions should involve reading/writing something from/to a file.
These are both concepts that we will cover in class AFTER spring break.

• 3 or more instance variables (e.g. self.name is an instance variable for the Person class).

In addition to writing the class, you MUST demonstrate how it works with several lines of code
which create at least two instances of the class and call its methods (including various calls illustrat-
ing how the optional arguments work). Include this demonstration at the END of your submission
file. For example, see Appendix B for a small example program using the Person class. Yours will
be slightly more involved since you class will have more methods, but this should give you the basic
idea.

Some ideas for the type of class you could write are:

• cow

• vending machine

• car

• college

• student

Part A: Planning and design

For the first part of the assignment, you are to figure out the design of your program. Specifically,
you should write:

• The name of the class.

• The instance variables you plan to have.

• The methods that your class will have, including the parameters they will take.

• Docstrings for the class and for each method describing what they do.

• One or two sentences stating what your program will do that uses the class.

You should write your design in Wing as if you were writing the class, but leave off the actual
bodies of the methods. If you use the keyword pass in the body of the method, Wing will still do
the proper indenting. Appendix A shows a sample design for the Person class.

2

Part B: my first “class”

Implement your class and program! As you implement it, you may realize that you want to change
your design. That’s fine, just make sure that your final submission meets the requirements laid out
in the specifications section.

When you’re done

Put your class and program using the class in a file named with your first name and last name
followed by assign7.py. Your program should run without having to make any method calls, i.e.
it should run when you press the green arrow in Wing.

• You should have comments at the very beginning of the file stating your name, course, as-
signment number and the date.

• Each function should have an appropriate docstring.

• Your class should have an appropriate docstring.

• Include other miscellaneous comments to make things clear.

Submit your .py file online using the courses submission mechanism.

Grading

points

Part A

properly formatted and commented 2
init and str 1

optional parameter method 1
3 instance variables 1
4 other methods 1
program descriptions 1

Part B

init 2
str 1

optional parameter method 3
have 4 methods total 3
2 or more nontrivial methods 3
method with loop 1
method that does I/O 3
program 4

comments/style 3

total 30

3

Appendix A

class Person:

""" Class to represent a person """

will have two instance variables:

self.name: stores the persons name

self.shirt_color: stores the color of the shirt the person is wearing

def __init__(self, persons_name, shirt_color = "blue"):

""" create a new person named persons_name wearing shirt_colored shirt """

pass

def get_shirt_color(self):

""" get the color of the shirt this person is wearing """

pass

def get_name(self):

""" get the name of this person """

pass

def change_shirt(self):

""" randomly change the shirt the person is wearing """

pass

def __str__(self):

pass

The program will generate two different people. It will then run through a normal

week (7 days) changing their shirt at the end of each day. If the shirts match, it

will print this fact out.

4

Appendix B

Sample program using the Person class:

p1 = Person("Steve")

p2 = Person("Amy", "green")

for i in range(1,8):

print "-" * 10

print "Day " + str(i)

print p1

print p2

if p1.get_shirt_color() == p2.get_shirt_color():

print p1.get_name() + " and " + p2.get_name() + \

" are wearing the same shirt color!"

print a blank line

print

p1.change_shirt()

p2.change_shirt()

and here is the output from a sample run:

Day 1

Steve, wearing a blue shirt

Amy, wearing a green shirt

Day 2

Steve, wearing a red shirt

Amy, wearing a blue shirt

Day 3

Steve, wearing a funny shirt

Amy, wearing a red shirt

Day 4

Steve, wearing a red shirt

Amy, wearing a red shirt

5

Steve and Amy are wearing the same shirt color!

Day 5

Steve, wearing a red shirt

Amy, wearing a blue shirt

Day 6

Steve, wearing a blue shirt

Amy, wearing a funny shirt

Day 7

Steve, wearing a green shirt

Amy, wearing a green shirt

Steve and Amy are wearing the same shirt color!

6

