3/31/14

ArrayLists

[X X J
David Kauchak ::o
cs201 | e
Spring 2014

Extendable array HH
[(TTTTTTTITTITIT]

Arrays store data in sequential locations in memory

Elements are accessed via their index
o Access of particular indices is O(1)

Say we want to implement an array that supports add (i.e.
addToBack)

o ArrayList or Vector in Java

o lists in Python, perl, Ruby, ...

How can we do it?

Extensible array

Idea 1: Each time we call add, create a new array one
element large, copy the data over and add the element

Running time: O(n)

Extensible array tH
[(TTTTTTTITTITIT]

Idea 2: Allocate extra, unused memory and save room to
add elements

For example: new ArrayList(2)

allocated for
actual array

extra space for
calls to add

3/31/14

Extensible array 3

Idea 2: Allocate extra, unused memory and save room to
add elements

Adding an item:

Extensible array 3

(TTTTTTTTTITITITTIT] :
Idea 2: Allocate extra, unused memory and save room to
add elements

How much extra space do we allocate?

Too little, and we might run out (e.g. add 15 items)

[l

- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Too much, and we waste lots of memory |deas?
Running time: O(1) Problems?
Extensible array e Extensible array

(ITTTTITTITITITITT) :
Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy
For example: new ArrayList(2)

L
(I
2
I 0

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy

For example: new ArrayList(2)

!@l

Running time: O(n)

3/31/14

Extensible array

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy

For example: new ArrayList(2)

Extensible array

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy

For example: new ArrayList(2)

What is the best case running

[(TTTTTTTTITTITITIT)
@ time of add? o(1)
_I] What is the worst case running o
How much extra memory time of add? ")
should we allocate?
Can we bound this tighter?
Extensible array 3
5 Amortized analysis :
Challenge: most of the calls to add will be O(1) What does “amortize” mean?
am-or-tized am-or-tiz-ing
How else might we talk about runtime? Definition of AMORTIZE = (W

What is the average running time of add in the
worst case?
Note this is different than the average-case running time

1 :to pay off (as a mortgage) gradually usually by periodic
payments of principal and interest or by payments to a
sinking fund

N

1 to gradually reduce or write off the cost or value of (as an
asset) <amortize goodwill> <amortize machinery>

— am-or-tiz-able ¢ adjective

3/31/14

Amortized analysis

There are many situations where the worst case running
time is bad

However, if we average the operations over n operations,
the average time is more reasonable

This is called amortized analysis

o This is different than average-case running time, which requires
reasoning about the input/situations that the method will be called
o The worse case running time doesn’t change

Amortized analysis

Many approaches for calculating the amortized
analysis

Aggregate method
o figure out the big-O runtime for a sequence of n calls
» divide by n to get the average run-time per call

Amortized analysis

Assume we start with an empty array with 1 location. What
is the cost to insert n items?

total_cost(n) = basic_cost(n) + double_cost(n)

CHALKBOARD ©

Amortized analysis

Assume we start with an empty array with 1 location. What
is the cost to insert n items?

total_cost(n) = basic_cost(n) + double_cost(n)

l

basic_cost(n) = O(n) double_cost(n) < 1+2+4+8+16+...+n=2n

total_cost(n) = O(n) amortized O(1)

3/31/14

Amortized analysis vs. :
worse case

What is the worst case for add?
o Still O(n)
o If you have an application that needs it to be O(1), this
implementation will not work!

amortized analysis give you the cost of n
operations (i.e. average cost) not the cost of any
individual operation

Extensible arrays

What if instead of doubling the array, we increase
the array by a fixed amount (call it k) each time

Is the amortized run-time still O(1)?
o No!
o Why?

Amortized analysis

Consider the cost of n insertions for some constant k
total_cost(n) = basic_cost(n) + double_cost(n)
double_cost(n) =k+2k+3k+4k+5k+...+n
nlk
=Y ki
i=1
nlk

=k Yi

i=l

basic_cost(n) = O(n)

ﬁ(ﬁﬂ)
:k%=0(nz)

Amortized analysis

Consider the cost of n insertions for some constant k
total_cost(n) = O(n) + O(n*)
=0Wn?)

amortized O(n)!

