3/5/14

Merge sort
[X X]
David Kauchak ::o
cs201 | e
Spring 2014

MergeSort: Merge 3
Assuming left (L) and right (R) are sorted

already, merge the two to create a single sorted
array

L:1358 R:2467

How can we do this?

Merge

L:1358 R:2467

Create a new array to hold the
result that is the combined length

Merge

L:1358 R:2467

What item is first?
How did you know?

3/5/14

Merge
L1]3 5 8 R{2]4 6 7

Compare the first two elements in

Merge

L:1358

[

R:2467

What item is second?

the lists! How did you know?
L L
L3 L3
L3 L3
b -
Merge : Merge :
L:1[3]5 8 R{2]4 6 7 L:1[3]5 8 R{2]4 6 7

K |

Compare the smallest element that
hasn’t been used yet in each list

- For L, this is next element in the list
- For R, this is still the first element

[|

General algorithm?

3/5/14

Merge
}]
L:1358 R:2467

General algorithm:

- Keep a “pointer” (index) for where we are in
each input array

- Start them both at the beginning

- Repeat until we're done:
- Compare current elements
- Copy smaller one down and increment that
point

Merge
| i
L:1358 R:2467

General algorithm:

- Keep a “pointer” (index) for where we are in
each input array

- Start them both at the beginning

- Repeat until we're done:
- Compare current elements
- Copy smaller one down and increment that
point

!
L:1358 R:2467

Merge
]

[1

General algorithm:

- Keep a “pointer” (index) for where we are in
each input array

- Start them both at the beginning

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that
point

Merge
] i
L:1358 R:2467

1

General algorithm:

- Keep a “pointer” (index) for where we are in
each input array

- Start them both at the beginning

- Repeat until we're done:
- Compare current elements
- Copy smaller one down and increment that
point

3/5/14

Merge
]

L:1358 R:2467

[12

General algorithm:

- Keep a “pointer” (index) for where we are in
each input array

- Start them both at the beginning

- Repeat until we're done:
- Compare current elements
- Copy smaller one down and increment that
point

Merge
]

L:1358 R:2467

[12

General algorithm:

- Keep a “pointer” (index) for where we are in
each input array

- Start them both at the beginning

- Repeat until we're done:
- Compare current elements
- Copy smaller one down and increment that
point

Merge

} !
L:1358 R:2467

[123

General algorithm:

- Keep a “pointer” (index) for where we are in
each input array

- Start them both at the beginning

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that
point

Merge

} !
L:1358 R:2467

[123

General algorithm:

- Keep a “pointer” (index) for where we are in
each input array

- Start them both at the beginning

- Repeat until we're done:
- Compare current elements
- Copy smaller one down and increment that
point

3/5/14

o000
(31X
oo
L]
Merge Merge
| ' } i
L:1358 R:2467 L:1358 R:2467
[1234 (1234
General algorithm: General algorithm:
- Keep a “pointer” (index) for where we are in - Keep a “pointer” (index) for where we are in
each input array each input array
- Start them both at the beginning - Start them both at the beginning
- Repeat until we're done: - Repeat until we're done:
- Compare current elements - Compare current elements
- Copy smaller one down and increment that - Copy smaller one down and increment that
point point
o0 00
eo0e (31X
(dd oe

Merge
} i
L:1358 R:2467

(12345

General algorithm:

- Keep a “pointer” (index) for where we are in
each input array

- Start them both at the beginning

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that
point

Merge
| i
L:1358 R:2467

(12345

General algorithm:

- Keep a “pointer” (index) for where we are in
each input array

- Start them both at the beginning

- Repeat until we're done:
- Compare current elements
- Copy smaller one down and increment that
point

3/5/14

o0 o000
o000 (31X
(dd oo
Ld L]
Merge Merge
] i | |
L:1358 R:2467 L:1358 R:2 46 7
(123456 (123456
General algorithm: General algorithm:
- Keep a “pointer” (index) for where we are in - Keep a “pointer” (index) for where we are in
each input array each input array
- Start them both at the beginning - Start them both at the beginning
- Repeat until we're done: - Repeat until we're done:
- Compare current elements - Compare current elements
- Copy smaller one down and increment that - Copy smaller one down and increment that
point point
o0 00
eo0e (31X
(dd oe

Merge

| I
L:1358 Ri2467
(1234567

What do we do now?

Merge
| [}

L:1358 R:2467

(12345678

If we run off the end of either array,
just copy the remaining from the
other array

3/5/14

MergeSort

71426538

MergeSort: implementation 1

mergeSort(data)
if data.length <=1
return data
else
midpoint = data.length/2
left = left half of data
right = right half of data

leftSorted = mergeSort(left)
rightSorted = mergeSort(right)

return merge(leftSorted, rightSorted)

MergeSort: implementation 1 |

mergeSort(data)

if data.length <=1
return data

else
midpoint = data.length/2
left = left half of data
right = right half of data

requires copying the data

leftSorted = mergeSort(left)
rightSorted = mergeSort(right)

return merge(leftSorted, rightSorted)

MergeSort: implementation 2
mergeSortHelper(data, low, high)
if high-low > 1
midPoint = low + (high-low)/2

mergeSortHelper(data, low, mid)
mergeSortHelper(data, mid, high)

merge(data, low, mid, high)

What is the difference?

3/5/14

Merge:

merge(data, low, mid, high)

Assume:
- data starting at low up to, but not including, mid is sorted
- data starting at mid up to, but not including, high is sorted

Goal:
- data from low up to, but not including, high is sorted

MergeSort

mewgesot 71426538

—

mergeSort 7 1 4 2 mergeSort 6 5 3 8

/N

mergeSort 7 1 mergsSor\4 2

/\

— 4 2 6 5 3 8

65 38

