
3/5/14

1

Merge sort

David Kauchak
cs201

Spring 2014

MergeSort: Merge
Assuming left (L) and right (R) are sorted
already, merge the two to create a single sorted
array

R: 2 4 6 7 L: 1 3 5 8

How can we do this?

Merge
R: 2 4 6 7 L: 1 3 5 8

Create a new array to hold the
result that is the combined length

Merge
R: 2 4 6 7 L: 1 3 5 8

What item is first?
How did you know?

3/5/14

2

Merge
R: 2 4 6 7 L: 1 3 5 8

Compare the first two elements in
the lists!

Merge
R: 2 4 6 7 L: 1 3 5 8

What item is second?
How did you know?

1

Merge
R: 2 4 6 7 L: 1 3 5 8

Compare the smallest element that
hasn’t been used yet in each list
-  For L, this is next element in the list
-  For R, this is still the first element

1

Merge
R: 2 4 6 7 L: 1 3 5 8

General algorithm?

1

3/5/14

3

Merge
R: 2 4 6 7 L: 1 3 5 8

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

1

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

1

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

3/5/14

4

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2 3

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2 3

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

3/5/14

5

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2 3 4

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2 3 4

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2 3 4 5

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2 3 4 5

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

3/5/14

6

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2 3 4 5 6

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2 3 4 5 6

General algorithm:
-  Keep a “pointer” (index) for where we are in

each input array
-  Start them both at the beginning

-  Repeat until we’re done:

-  Compare current elements
-  Copy smaller one down and increment that

point

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2 3 4 5 6 7

What do we do now?

Merge
R: 2 4 6 7 L: 1 3 5 8

1 2 3 4 5 6 7 8

If we run off the end of either array,
just copy the remaining from the
other array

3/5/14

7

MergeSort

7 1 4 2 6 5 3 8

MergeSort: implementation 1

mergeSort(data)
 if data.length <= 1
 return data
 else
 midpoint = data.length/2
 left = left half of data
 right = right half of data

 leftSorted = mergeSort(left)
 rightSorted = mergeSort(right)

 return merge(leftSorted, rightSorted)

MergeSort: implementation 1

mergeSort(data)
 if data.length <= 1
 return data
 else
 midpoint = data.length/2
 left = left half of data
 right = right half of data

 leftSorted = mergeSort(left)
 rightSorted = mergeSort(right)

 return merge(leftSorted, rightSorted)

requires copying the data

MergeSort: implementation 2
mergeSortHelper(data, low, high)
 if high-low > 1
 midPoint = low + (high-low)/2

 mergeSortHelper(data, low, mid)
 mergeSortHelper(data, mid, high)

 merge(data, low, mid, high)

What is the difference?

3/5/14

8

Merge:

merge(data, low, mid, high)

Assume:
-  data starting at low up to, but not including, mid is sorted
-  data starting at mid up to, but not including, high is sorted

Goal:
-  data from low up to, but not including, high is sorted

MergeSort

7 1 4 2 6 5 3 8

6 5 3 8 7 1 4 2

7 1 4 2 6 5 3 8

7 1 4 2 6 5 3 8

mergeSort

mergeSort mergeSort

mergeSort mergeSort

mergeSort mergeSort

