Adapted from: Binomial Tree
Kevin Wayne
B, By
(@]

B,: a binomial tree B,_; with the
addition of a left child with
another binomial tree B ,

g

B,

Binomial Tree

Number of nodes with
respect to k?

Binomial Tree

Height?

B, B, B, B, B,

N(B,) = 1

N(By) = 2 N(B,;) = 2

. I I/I {%I

B, B, B, B, B,
Binomial Tree

Degree of root node?

k, each time we add another binomial tree

g

B,

3/7/13

Binomial Tree
By

What are the children of

the root? B,
k binomial trees:

Bk-1’ Bk_z, caey BO
. I I/I {ﬁl
B, B, B, B, B,

Binomial Tree

Why is it called a binomial tree?

depth 0
depth 1
depth 2

depth 3

depth 4 B,

Binomial Tree

B, has ('f) nodes at depth i.

(&)

depth 0
depth 1
depth 2
depth 3

depth 4 B,

Binomial Heap

Binomial heap Vuillemin, 1978.
Sequence of binomial trees that satisfy binomial heap
property:
-each tree is min-heap ordered
—top level: full or empty binomial tree of order k

—which are empty or full is based on the number of
elements

B, B,

3/7/13

Binomial Heap

Like our “set” data structure from last time, except binomial
tree heaps instead of arrays

Ay [18]

A3, 7]

A, empty

A empty

A;: [6, 8, 29, 10, 44, 30, 23, 22, 48, 31, 17, 45, 32, 24, 55]

N=19

#trees =3
height = 4
binary = 10011

B, B,

Binomial Heap: Properties

How many heaps?

O(log n) — binary number representation

N=19

#trees =3
height =4
binary = 10011

B, B,

Binomial Heap: Properties
Where is the max/min?

Must be one of the
roots of the heaps

N=19

#trees =3
height = 4
binary = 10011

B, By

Binomial Heap: Properties
Runtime of max/min?

O(log n)

N=19

#trees =3
height =4
binary = 10011

B, B,

3/7/13

3/7/13

Binomial Heap: Properties Binomial Heap: Union

. How can we merge two binomial tree heaps of the same size (2¥)?
Height? O e @
- connect roots of H' and H

- choose smaller key to be root of H

floor(log, n)
- largest tree = B, ,
- height of that tree is log n

Runtime? O(1)

N=19

#trees=3

height = 4

binary = 10011

B1 BO
Binomial Heap: Union Binomial Heap: Union
Go through each tree size starting at 0 and merge as we go
@) &
+ @
How can we combine/merge binomial 11 1
heaps (i.e. a combination of binomial 1.0 0 1 1
tree heaps)? 19+7=26 + 0 0 1 1 1
11 0 1 0

Binomial Heap: Union

@ ®
@

Binomial Heap: Union

3/7113

Binomial Heap: Union

Analogous to binary addition
Running time?

« Proportional to number of trees in root lists 2 O(log, N)
« O(log N)

19+7=26 + 0

alo © -
o= O =
ala a o

Binomial Heap: Delete Min/Max

We can find the min/max in O(log n).
How can we extract it?

Hint: B, consists of
binomial trees:
Bk-17 Bk_z, caey BO

3/7/13

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

« Find root x with min key in root list of H, and delete
« H' < broken binomial trees

« H < Union(H', H)

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

« Find root x with min key in root list of H, and delete
« H' < broken binomial trees

« H < Union(H', H)

Running time? O(log N)

Binomial Heap: Decrease Key

Just call Decrease-Key/Increase-Key of Heap
« Suppose x is in binomial tree B,
« Bubble node x up the tree if x is too small

Running time: O(log N)
« Proportional to depth of node x

Binomial Heap: Delete

Delete node x in binomial heap H
« Decrease key of x to -
« Delete min

Running time: O(log N)

3/7/13

Binomial Heap: Insert

Insert a new node x into binomial heap H
« H' < MakeHeap(x)
« H < Union(H', H)

Running time. O(log N)

Build-Heap
Call insert n times
Runtime? O(n log n)

Can we get a tighter bound?

Build-Heap
Call insert n times

Consider inserting n numbers times
« how many times will B; be empty?
« how many times will we need to merge with B?
« how many times will we need to merge with B,?
« how many times will we need to merge with B,?

= how many times will we need to merge with B, ,?

cost

Build-Heap
Call insert n times
Consider inserting n numbers times
« how many times will B, be empty? n/2

« how many times will we need to merge with B;? n/2
« how many times will we need to merge with B,? n/4
« how many times will we need to merge with B,? n/8

= how many times will we need to merge with B, ,? 1

Runtime? O(n)

cost
o(1)
o(1)
o(1)
o(1)

o(1)

3/7/13

Heaps

Binary heap Binomial heap

Procedure (worst-case) (worst-case)
BuiLD-HEAP o(n) o(n)
INSERT O(logn) O(logn)
MAXIMUM o(1) O(logn)
EXTRAC-MAX O(logn) O(logn)
UNION o(n) O(logn)
INCREASE-ELEMENT O(logn) O(logn)
DELETE O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Fibonacci Heaps

Similar to binomial heap

A Fibonacci heap consists of a sequence of heaps
More flexible

Heaps do not have to be binomial trees
More complicated ©

Min [H]

3
@ O D €

.

o
@ ©

©

©

Heaps

Binary heap Binomial heap Fibonacci heap

Procedure (worst-case) (worst-case) (amortized)
BuiLD-HEAP o(n) O(n) O(n)
INSERT O(logn) O(logn) o(1)
MAXIMUM o(1) O(logn) o(1)
EXTRAC-MAX O(logn) O(logn) O(logn)
UNION O(n) O(logn) o(1)
INCREASE-ELEMENT O(logn) O(logn) o(1)
DELETE O(logn) O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Should you always use a Fibonacci heap?

Heaps

Binary heap Binomial heap Fibonacci heap

Procedure (worst-case) (worst-case) (amortized)
BuiLD-HEAP O(n) O(n) O(n)
INSERT O(logn) O(logn) o(1)
MAXIMUM o(1) O(logn) o(1)
EXTRAC-MAX O(logn) O(logn) O(logn)
UNION O(n) O(logn) o(1)
INCREASE-ELEMENT O(logn) O(logn) o(1)
DELETE O(logn) ©(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

» Extract-Max and Delete are O(n) worst case
» Constants can be large on some of the operations
* Complicated to implement

3/7113

Heaps

Binary heap Binomial heap Fibonacci heap

Procedure (worst-case) (worst-case) (amortized)
BuIlLD-HEAP O(n) O(n) O(n) |
INSERT O(logn) O(logn) o(1)
MAXIMUM o(1) O(logn) o(1)
EXTRAC-MAX O(logn) O(logn) O(logn) |
UNION On) B(logn) £]6)
INCREASE-ELEMENT O(logn) O(logn) o(1)
DELETE O(logn) O(logn) O(logn)

(adapted from Figure 19.1, pg. 456 [1])

Can we do better?

3/7113

10

