
2/28/13

1

Data Structures

David Kauchak
cs302

Spring 2013

Data Structures
What is a data structure?

Way of storing data that facilitates particular operations

Dynamic set operations: For a set S

l  Search(S,k) – Does k exist in S?
l  Insert(S,k) – Add k to S
l  Delete(S,x) – Given a pointer/reference, x, to an elkement, delete

it from S
l  Min(S) – Return the smallest element of S
l  Max(S) – Return the largest element of S

Data structures

What are some of the data
structures you’ve seen?

Array

Sequential locations in memory in linear order
Elements are accessed via index
Cost of operations:

l  Search(S,k) –
l  Insert(S,k) –
l  InsertIndex(S,k) –
l  Delete(S,x) –
l  Min(S) –
l  Max(S) –

O(n)
Θ(1) if we leave extra space, Θ(n)

Θ(n)
Θ(n)

Θ(n)
Θ(n)

2/28/13

2

Array

Uses?
constant time access of particular indices

Linked list

Elements are arranged linearly.
An element in the list points to the next element
in the list
Cost of operations:

l  Search(S,k) –
l  Insert(S,k) –
l  InsertIndex(S,k) –
l  Delete(S,x) –
l  Min(S) –
l  Max(S) –

O(n)
Θ(1)

O(n) or Θ(1) if at index
O(n)

Θ(n)
Θ(n)

Linked list

Uses?
constant time insertion at the cost of linear time access

Double linked list

Elements are arranged linearly.

An element in list points to the next element and
previous element in the list

What does the back link get us?
l  Θ(1) deletion (assuming a reference to the item)

2/28/13

3

Stack
LIFO

Picture the stack of plates at a buffet

Can implement with an array or a linked list

Stack

LIFO
Picture the stack of plates at a buffet
Can implement with an array or a linked list

push(1)

push(2)

push(3)

pop()
pop()
pop()

3

2

1

top

Stack

Empty – check if stack is empty
l  Array:
l  Linked list:
l  Runtime: Θ(1)

check if “top” is at index 0
check if “head” pointer is null

Stack

Pop – removes the top element from the list
l  check if empty, if so, “underflow”
l  Array:

l  return element at “top” and decrement “top”
l  Linked list:

l  return and remove at front of linked list
l  Runtime:

l  Θ(1)

2/28/13

4

Stack

Push – add an element to the list
l  Array:

l  increment “top” and insert element. Must check for
overflow!

l  Linked list:
l  insert element at front of linked list

l  Runtime:
l  Θ(1)

Stack
Array or linked list?

l  Array: more memory efficient
l  Linked list: don’t have to worry about “overflow”
l  Other options?

l  ArrayList (expandable array): compromise between two, but
not all operations are O(1)

Uses?
l  runtime “stack”
l  graph search algorithms (depth first search)
l  syntactic parsing (i.e. compilers)

Queue

FIFO

Picture a line at the grocery store

Enqueue(1)

Enqueue(2)

Enqueue(3)

Dequeue()

Dequeue()

Dequeue()

1

2

3

Queue
Can implement with:

l  array?
l  singly linked list?
l  doubly linked list?

2/28/13

5

Queue

FIFO

Can implement with an array, a linked list or a double linked
list
l  Array:

l  keep head an tail indices
l  add to one and remove form the other

l  Linked list
l  keep a head and tail reference
l  add to the tail
l  remove from the head

l  Runtimes?

head tail

Queue
Operations

l  Empty – Θ(1)
l  Enqueue – add element to end of queue - Θ(1)
l  Dequeue – remove element from the front of the

queue - Θ(1)
Uses?

l  scheduling
l  graph traversal (breadth first search)

