MAX FLOW APPLICATIONS

4/30/13

Admin

o CS lunch today
o Grading

Flow graph/networks
o

Flow network
directed, weighted graph (V, E)
positive edge weights indicating the “capacity” (generally,
assume integers)
contains a single source s € V with no incoming edges
contains a single sink/target t € V with no outgoing edges

every vertex is on a path from s to t

20 10

20

Flow constraints

in-flow = out-flow for every vertex (except s, t)
flow along an edge cannot exceed the edge capacity

flows are positive

20 10

20

4/30/13

Max flow problem

Given a flow network: what is the maximum flow we
can send from s to t that meet the flow constraints?

20 ° 10
]
O

Network flow properties

If one of these is true then all are true (i.e. each
implies the the others):

0 f is a maximum flow
0 Gy (residual graph) has no paths from s to t

o |f| = minimum capacity cut

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
flow = O for all edges
G; = residualGraph(G)
while a simple path exists from s to t in G;
send as much flow along the path as possible
G; = residualGraph(G)

return flow

Application: bipartite graph matching

Bipartite graph — a graph where every vertex can be partitioned into
two sets X and Y such that all edges connect a vertex u € X and a
vertexveEY

/

L

040

©)
(@)

4/30/13

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at

most once in M

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at

most once in M

matching

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at

most once in M

matching

Application: bipartite graph matching

A matching M is a subset of edges such that each node occurs at

most once in M

not a
matching

4/30/13

Application: bipartite graph matching

==
A matching can be thought of as pairing the vertices

&—

Application: bipartite graph matching

==
Bipartite matching problem: find the /argest matching in a bipartite

graph

Where might this
problem come up?

- CS department has n courses
and m faculty

- Every instructor can teach
some of the courses

- What course should each
person teach?

- Anytime we want to match n
things with m, but not all
things can match

Application: bipartite graph matching

==
Bipartite matching problem: find the /argest matching in a bipartite
graph
ideas?
- greedy?

- dynamic programming?

Application: bipartite graph matching
[

Setup as a flow problem:

&

4/30/13

Application: bipartite graph matching

Setup as a flow problem:

edge weights?

Application: bipartite graph matching
(o
Setup as a flow problem:

all edge weights are 1

Application: bipartite graph matching

Setup as a flow problem:

after we find the flow, how do we find the matching?

Application: bipartite graph matching
(o
Setup as a flow problem:

match those nodes with flow between them

4/30/13

Application: bipartite graph matching
Is it correct?

Assume it’s not
there is a better matching
because of how we setup the graph flow = # of matches
therefore, the better matching would have a higher flow

contradiction (max-flow algorithm finds maximall)

Application: bipartite graph matching

Run-time?
Cost to build the flow?
O(E)
m each existing edge gets a capacity of 1

® introduce V new edges (to and from s and 1)

m Vis O(E) (for non-degenerate bipartite matching problems)
Max-flow calculation?

Basic Ford-Fulkerson: O(max-flow * E)

Edmunds-Karp: O(V E?)

Preflow-push: O(V3)

Application: bipartite graph matching

Run-time?
Cost to build the flow?2
O(E)
m each existing edge gets a capacity of 1
= introduce V new edges (to and from s and 1)

m Vis O(E) (for non-degenerate bipartite matching problems)
Max-flow calculation?

Basic Ford-Fulkerson: O(max-flow * E)

= max-flow = O(V)

= O(V E)

Application: bipartite graph matching

Bipartite matching problem: find the /argest matching in a bipartite
graph

CS department has n courses
and m faculty

Every instructor can teach some
of the courses

- What course should each person .

teach? ’

/

Each faculty can teach at most 3
courses a semester?

Change the s edge weights
(representing faculty) to 3 o

(@

4/30/13

Survey Design

Design a survey with the following requirements:
Design survey asking n consumers about m products
Can only survey consumer about a product if they own it
Question consumers about at most g products
Each product should be surveyed at most s times

Maximize the number of surveys/questions asked

How can we do this2

Survey Design

consumers

capacit
each consumer can answer

at most g questions

consumer owned product

products

y 1 edge if

each product can be
questioned about at most
s times

Survey design

Is it correct?

Each of the comments above the flow graph match the
problem constraints

max-flow finds the maximum matching, given the
problem constraints

What is the run-time?
Basic Ford-Fulkerson: O(max-flow * E)
Edmunds-Karp: O(V E?)
Preflow-push: O(V3)

Edge Disjoint Path

Two paths are
common

S

if they have no edge in

4/30/13

Edge Disjoint Paths

Two paths are if they have no edge in
common

Edge Disjoint Paths Problem

Given a directed graph G = (V, E) and two nodes s and
t, find the max number of edge-disjoint paths from s to t

Why might this be useful2

Edge Disjoint Paths Problem

Given a directed graph G = (V, E) and two nodes s and
t, find the max number of edge-disjoint paths from s to t

Why might this be useful?
edges are unique resources (e.g. communications,
transportation, etc.)
how many concurrent (non-conflicting) paths do we have
fromstot

Edge Disjoint Paths

Algorithm ideas?

4/30/13

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge

< — >

NN

What does the max flow represent?
Why?

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge

- max-flow = maximum number of disjoint paths
- correctness:

- each edge can have at most flow = 1, so can
only be traversed once
therefore, each unit out of s represents a
separate path to t

Max-flow variations

What if we have multiple sources and multiple sinks
(e.g. the Russian train problem has multiple sinks)2

capacity
network

TRt
\é/\é)l\él

Max-flow variations

Create a new source and sink and connect up with
infinite capacities...

\éJ
/

capacity —g
network

&=

4/30/13

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of flow
through each vertex

What is the max-flow now?

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of flow
through each vertex

20 units

Max-flow variations

Vertex capacities: in addition to having edge
capacities we can also restrict the amount of flow
through each vertex

How can we solve this problem?

Max-flow variations

For each vertex v
create a new node v’
create an edge with the vertex capacity from v to v’

move all outgoing edges from v to v’

Can you now prove it's correct?

10

4/30/13

Max-flow variations

Proof:

1. show that if a solution exists in the original graph,
then a solution exists in the modified graph

2. show that if a solution exists in the modified graph,
then a solution exists in the original graph

Max-flow variations

Proof:

we know that the vertex constraints are satisfied

® no incoming flow can exceed the vertex capacity since we have a
single edge with that capacity from v to v’

we can obtain the solution, by collapsing each v and v’ back

to the original v node

u in-flow = out-flow since there is only a single edge from v to v’

® because there is only a single edge from v to v’ and all the in edges
go in to v and out to V', they can be viewed as a single node in the

original graph

More problems:
maximum independent path

Two paths are if they have no vertices in
common

More problems:
maximum independent path

Two paths are if they have no vertices in

common

11

4/30/13

More problems:
maximum independent path

Find the maximum number of independent paths

Ideas?

maximum independent path

Max flow formulation:
assign unit capacity to every edge (though any value would work)
assign unit capacity to every vertex

Same idea as the maximum edge-disjoint paths,
but now we also constrain the vertices

More problems: wireless network

o1 The campus has hired you to setup the wireless network

0 There are currently m wireless stations positioned at various
(x,y) coordinates on campus

0 The range of each of these stations is r (i.e. the signal goes
at most distance r)

0 Any particular wireless station can only host k people
connected

o You've calculate the n most popular locations on campus and
have their (x,y) coordinates

o Could the current network support n different people trying
to connect at each of the n most popular locations (i.e. one
person per location)?

0 Prove correctness and state run-time

Another matching problem

0 n people nodes and m station nodes

if dist(p;,w;) < r then add an edge from pi to wj with weight 1
(where dist is euclidean distance)

add edges s -> p, with weight 1
0 add edges w; -> t with weight k

add edge if

dist(p, w) < r - solve for max-flow
W

- check if flow = m

12

4/30/13

Correctness

If there is flow from a person node to a wireless node then that
person is attached to that wireless node

if dist(pi,wj) < r then add an edge from pi to wj with weigth 1
(where dist is euclidean distance)
only people able to connect to node could have flow

add edges s -> pi with weight 1

each person can only connect to one wireless node

add edges wj -> t with weight L

at most L people can connect to a wireless node

If flow = m, then every person is connected to a node

Runtime

E = O(mn): every person is within range of every node
V=m+n+2

max-flow = O(m), s has at most m out-flow

O(max-flow * E) = O(m?n): Ford-Fulkerson
O(VE?) = O((m+n)m?2n2): Edmunds-Karp
O(V3) = O((m+n)3): preflow-push variant

13

