
2/14/13 

1 

Big O 

David Kauchak  
cs302 

Spring 2013 

Administrative 
l  Assignment 1: how’d it go? 
l  Assignment 2: out soon… 
l  CLRS code? 
l  Videos 

Insertion-sort Insertion-sort 

Does it terminate? 



2/14/13 

2 

Insertion-sort 

Is it correct?  Can you prove it? 

Loop invariant 

Loop invariant: A statement about a loop that is true 
before the loop begins and after each iteration of the loop. 
 
Upon termination of the loop, the invariant should help you 
show something useful about the algorithm. 

Loop invariant? 

Loop invariant 

Loop invariant: A statement about a loop that is true 
before the loop begins and after each iteration of the loop. 
 
At the start of each iteration of the for loop of lines 1-7 the 
subarray A[1..j − 1] is the sorted version of the original 
elements of A[1..j − 1]  
 

Proof? 

Loop invariant 
At the start of each iteration of the for loop of lines 1-7 the 
subarray A[1..j − 1] is the sorted version of the original elements 
of A[1..j − 1]  
 

Proof by induction 
- Base case: invariant is true before loop 
- Inductive case: it is true after each iteration 



2/14/13 

3 

Insertion-sort 

How long will it take to run? 

Asymptotic notation 
l  How do you answer the question: “what is the 

running time of algorithm x?” 
l  We need a way to talk about the computational cost 

of an algorithm that focuses on the essential parts 
and ignores irrelevant details 

l  You’ve seen some of this already: 
l  linear 
l  n log n 
l  n2 

Asymptotic notation 
Precisely calculating the actual steps is tedious 
and not generally useful 

Different operations take different amounts of time.  
Even from run to run, things such as caching, etc. 
cause variations 

We want to identify categories of algorithmic 
runtimes 

For example… 

f1(n) takes n2 steps 
f2(n) takes 2n + 100 steps 
f3(n) takes 3n+1 steps 

Which algorithm is better? 
Is the difference between f2 and f3 important/
significant?   



2/14/13 

4 

Runtime examples Big O: Upper bound 

O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

Big O: Upper bound 

O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We can bound the function f(n) 
above by some constant factor 
of g(n) 

Big O: Upper bound 

O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

We can bound the function f(n) 
above by some constant 
multiplied by g(n) 

For some increasing 
range 



2/14/13 

5 

Big O: Upper bound 

O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

nxf
nnxf

nxf
nxf

nO

6)(
405)(
1002/1)(

3)(

)(

4

2
3

2
2

2
1

2

=

++=

+=

=

=

Big O: Upper bound 

O(g(n)) is the set of functions: 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

Generally, we’re most interested in 
big O notation since it is an upper 
bound on the running time 

Omega: Lower bound 

Ω(g(n)) is the set of functions: 

Ω(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ cg(n) ≤ f (n) for all n ≥ n0

$
%
&

'&

(
)
&

*&

Omega: Lower bound 

Ω(g(n)) is the set of functions: 

Ω(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ cg(n) ≤ f (n) for all n ≥ n0

$
%
&

'&

(
)
&

*&

We can bound the function f(n) 
below by some constant factor 
of g(n) 



2/14/13 

6 

Omega: Lower bound 

Ω(g(n)) is the set of functions: 

Ω(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ cg(n) ≤ f (n) for all n ≥ n0

$
%
&

'&

(
)
&

*&

3
4

2
3

2
2

2
1

2

6)(
405)(
1002/1)(

3)(

)(

nxf
nnxf

nxf
nxf

n

=

++=

+=

=

=Ω

Theta: Upper and lower bound 

Θ(g(n)) is the set of functions: 

Θ(g(n)) = f (n) :
there exists positive constants c1,c2  and n0  such that
0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0

$
%
&

'&

(
)
&

*&

Theta: Upper and lower bound 

Θ(g(n)) is the set of functions: 

Θ(g(n)) = f (n) :
there exists positive constants c1,c2  and n0  such that
0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0

$
%
&

'&

(
)
&

*&

We can bound the function f(n) 
above and below by some 
constant factor of g(n) (though 
different constants) 

Theta: Upper and lower bound 

Θ(g(n)) is the set of functions: 

Θ(g(n)) = f (n) :
there exists positive constants c1,c2  and n0  such that
0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0

$
%
&

'&

(
)
&

*&

Note:  A function is theta bounded iff it is big O 
bounded and Omega bounded 



2/14/13 

7 

Theta: Upper and lower bound 

Θ(g(n)) is the set of functions: 

Θ(g(n)) = f (n) :
there exists positive constants c1,c2  and n0  such that
0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0

$
%
&

'&

(
)
&

*&

nnnxf
nnxf

nxf
nxf

n

log3)(
405)(
1002/1)(

3)(

)(

2
4

2
3

2
2

2
1

2

+=

++=

+=

=

=Θ

Visually 

f(n) 

Visually: upper bound 

n0 

f(n) 

Visually: lower bound 

n0 

f(n) 



2/14/13 

8 

worst-case vs. best-case vs. 
average-case 
worst-case: what is the worst the running time of the 
algorithm can be? 
 
best-case: what is the best the running time of the 
algorithm can be? 
 
average-case: given random data, what is the running time 
of the algorithm? 
 
Don’t confuse this with O, Ω and Θ.  The cases above are 
situations, asymptotic notation is about bounding particular 
situations 

Proving bounds: find constants 
that satisfy inequalities 

Show that 5n2 – 15n + 100 is Θ(n2) 
 
Step 1: Prove O(n2) – Find constants c and n0 such that  
5n2 – 15n + 100 ≤ cn2 for all n > n0 

100155 22 +−≥ nncn
2/100/155 nnc +−≥

Let n0 =1 and c = 5 + 100 = 105. 
100/n2 only get smaller as n increases and we 
ignore -15/n since it only varies between -15 and 0 

Proving bounds 
Step 2: Prove Ω(n2) – Find constants c and n0 such 
that 5n2 – 15n + 100 ≥ cn2 for all n > n0 

100155 22 +−≤ nncn
2/100/155 nnc +−≤

Let n0 =4 and c = 5 – 15/4 = 1.25 (or anything less 
than 1.25). 15/n is always decreasing and we 
ignore 100/n2 since it is always between 0 and 100. 

Bounds 
Is 5n2  O(n)? No 

How would we prove it? 

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%



2/14/13 

9 

Disproving bounds 

Is 5n2  O(n)?

O(g(n)) = f (n) :
there exists positive constants c and n0  such that
0 ≤ f (n) ≤ cg(n) for all n ≥ n0

#
$
%

&%

'
(
%

)%

Assume it’s true. 
 
That means there exists some c and n0 such that 

5n2 ≤ cn for n > n0

5n ≤ c contradiction! 

Some rules of thumb 
Multiplicative constants can be omitted 

l  14n2 becomes n2 

l  7 log n become log n 
 
Lower order functions can be omitted 

l  n + 5 becomes n 
l  n2 + n becomes n2 

 
na dominates nb if a > b  

l  n2 dominates n, so n2+n becomes n2 

l  n1.5 dominates n1.4 
 

Some rules of thumb 
an dominates bn if a > b 

l  3n dominates 2n 

 
Any exponential dominates any polynomial 

l  3n dominates n5 

l  2n dominates nc 

 
Any polynomial dominates any logorithm 

l  n dominates log n or log log n 
l  n2 dominates n log n 
l  n1/2 dominates log n 

 
Do not omit lower order terms of different variables (n2 + m) does not 
become n2 

Big O 

n2 + n log n + 50 

2n -15n2 + n3 log n 

nlog n + n2 + 15n3 

n5 + n! + nn 



2/14/13 

10 

Some examples 

l  O(1) – constant.  Fixed amount of work, 
regardless of the input size 
l  add two 32 bit numbers 
l  determine if a number is even or odd 
l  sum the first 20 elements of an array 
l  delete an element from a doubly linked list 

l  O(log n) – logarithmic.  At each iteration, 
discards some portion of the input (i.e. half) 
l  binary search 

Some examples 

l  O(n) – linear. Do a constant amount of work 
on each element of the input 
l  find an item in a linked list 
l  determine the largest element in an array 

l  O(n log n) log-linear.  Divide and conquer 
algorithms with a linear amount of work to 
recombine 
l  Sort a list of number with MergeSort 
l  FFT 

Some examples 
l  O(n2) – quadratic. Double nested loops that 

iterate over the data 
l  Insertion sort 

l  O(2n) – exponential 
l  Enumerate all possible subsets 
l  Traveling salesman using dynamic programming 

l  O(n!) 
l  Enumerate all permutations 
l  determinant of a matrix with expansion by minors 


