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Shortest Paths and 
Minimum Spanning Trees 

David Kauchak 
cs302 

Spring 2013 

Admin 

Can resubmit homeworks 12-15 for up to half 
credit back 

l  Due by the end of the week 
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Is Dijkstra’s algorithm 
correct? 

Invariant: 

Is Dijkstra’s algorithm 
correct? 

Invariant: For every vertex removed from the heap, 
dist[v] is the actual shortest distance from s to v 

proof? 

Is Dijkstra’s algorithm 
correct? 
Invariant: For every vertex removed from the heap, 
dist[v] is the actual shortest distance from s to v 
 

l  The only time a vertex gets visited is when the 
distance from s to that vertex is smaller than the 
distance to any remaining vertex 

l  Therefore, there cannot be any other path that hasn’t 
been visited already that would result in a shorter path 
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Running time? Running time? 

1 call to MakeHeap 

Running time? 

|V| iterations 

Running time? 

|V| calls 
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Running time? 

O(|E|) calls 

Running time? 

Depends on the heap implementation 

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total 

Array O(|V|) O(|V|2) O(|E|) O(|V|2) 

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|) 

O(|E| log |V|) 

Running time? 

Depends on the heap implementation 

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total 

Array O(|V|) O(|V|2) O(|E|) O(|V|2) 

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|) 

O(|E| log |V|) 

Is this an improvement? If |E| < |V|2 / log |V| 

Running time? 

Depends on the heap implementation 

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total 

Array O(|V|) O(|V|2) O(|E|) O(|V|2) 

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|) 

Fib heap O(|V|) O(|V| log |V|) O(|E|) O(|V| log |V| + |E|) 

O(|E| log |V|) 
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What about Dijkstra’s on…? 
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Dijkstra’s algorithm only 
works for positive edge 
weights 

Bounding the distance 
Another invariant:  For each vertex v, dist[v] is an upper 
bound on the actual shortest distance 

Is this a valid invariant? 

Bounding the distance 
Another invariant:  For each vertex v, dist[v] is an upper 
bound on the actual shortest distance 

l  start off at ∞ 
l  only update the value if we find a shorter distance 

 
 
An update procedure 

)},(][],[min{][ vuwudistvdistvdist +=



4/23/13 

10 

Can we ever go wrong applying this update rule? 
l  We can apply this rule as many times as we want and 

will never underestimate dist[v] 

When will dist[v] be right? 
l  If u is along the shortest path to v and dist[u] is correct 

)},(][],[min{][ vuwudistvdistvdist +=

dist[v] will be right if u is along the shortest path to v 
and dist[u] is correct 
 
Consider the shortest path from s to v 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

dist[v] will be right if u is along the shortest path to v 
and dist[u] is correct 
 
What happens if we update all of the vertices with 
the above update? 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

dist[v] will be right if u is along the shortest path to v 
and dist[u] is correct 
 
What happens if we update all of the vertices with 
the above update? 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct 
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dist[v] will be right if u is along the shortest path to v 
and dist[u] is correct 
 
What happens if we update all of the vertices with 
the above update? 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct 

dist[v] will be right if u is along the shortest path to v 
and dist[u] is correct 
 
Does the order that we update the vertices matter? 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct 

dist[v] will be right if u is along the shortest path to v and 
dist[u] is correct 
 
How many times do we have to do this for vertex pi to have 
the correct shortest path from s? 

l  i times 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

dist[v] will be right if u is along the shortest path to v and 
dist[u] is correct 
 
How many times do we have to do this for vertex pi to have 
the correct shortest path from s? 

l  i times 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct 
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dist[v] will be right if u is along the shortest path to v and 
dist[u] is correct 
 
How many times do we have to do this for vertex pi to have 
the correct shortest path from s? 

l  i times 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct correct 

dist[v] will be right if u is along the shortest path to v and 
dist[u] is correct 
 
How many times do we have to do this for vertex pi to have 
the correct shortest path from s? 

l  i times 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct correct correct 

dist[v] will be right if u is along the shortest path to v and 
dist[u] is correct 
 
How many times do we have to do this for vertex pi to have 
the correct shortest path from s? 

l  i times 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct correct correct … 

dist[v] will be right if u is along the shortest path to v and 
dist[u] is correct 
 
What is the longest (vertex-wise) the path from s to any 
node v can be? 

l  |V| - 1 edges/vertices 

)},(][],[min{][ vuwudistvdistvdist +=

s p1 v p2 p3 pk 

correct correct correct correct … 
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Bellman-Ford algorithm Bellman-Ford algorithm 

Initialize all the 
distances 

iterate over all 
edges/vertices and 
apply update rule 

do it |V| -1 times 

Bellman-Ford algorithm 

check for negative 
cycles 

Negative cycles 
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What is the shortest path 
from a to e?  
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Bellman-Ford algorithm Bellman-Ford algorithm 
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Bellman-Ford algorithm 
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Bellman-Ford algorithm 
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Iteration: 3 

A has the correct 
distance and path 

Bellman-Ford algorithm 
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Bellman-Ford algorithm 
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B has the correct 
distance and path 
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D (and all other 
nodes) have the 
correct distance 
and path 

Correctness of Bellman-Ford 
Loop invariant: 
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Correctness of Bellman-Ford 
Loop invariant: After iteration i, all vertices with 
shortest paths from s of length i edges or less have 
correct distances 

Runtime of Bellman-Ford 

O(|V| |E|) 

Runtime of Bellman-Ford 

Can you modify the algorithm to run 
faster (in some circumstances)? 

Single source shortest paths 
All of the shortest path algorithms we’ve looked at 
today are call “single source shortest paths” 
algorithms 
 
Why? 



4/23/13 

19 

All pairs shortest paths 
Simple approach 

l  Call Bellman-Ford |V| times 
l  O(|V|2 |E|) 

 
Floyd-Warshall – Θ(|V|3) 
 
Johnson’s algorithm – O(|V|2 log |V| + |V| |E|) 

Minimum spanning trees 
What is the lowest weight set of edges that connects all 
vertices of an undirected graph with positive weights 

Input: An undirected, positive weight graph, G=(V,E) 

Output: A tree T=(V,E’) where E’ ⊆ E that minimizes 

∑
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MSTs 

Can an MST have a cycle? 
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MSTs 

Can an MST have a cycle? 
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Applications? 
Connectivity 

l  Networks (e.g. communications) 
l  Circuit design/wiring 

 
hub/spoke models (e.g. flights, transportation) 
 
Traveling salesman problem? 

Algorithm ideas? 
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Cuts 
A cut is a partitioning of the vertices into two sets S and V-S 
 
An edge “crosses” the cut if it connects a vertex u∈V and 
v∈V-S 
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Minimum cut property 
Given a partion S, let edge e be the minimum 
cost edge that crosses the partition.  Every 
minimum spanning tree contains edge e. 

Prove this! 

A 

B D 

C 

4 

1 

2 
3 

4 
F 

E 

5 
4 

6 

4 

Minimum cut property 
Given a partion S, let edge e be the minimum 
cost edge that crosses the partition.  Every 
minimum spanning tree contains edge e. 

S V-S 

e’ 

e 

Consider an MST with edge e’ that is not the minimum edge 

Minimum cut property 
Given a partion S, let edge e be the minimum 
cost edge that crosses the partition.  Every 
minimum spanning tree contains edge e. 

S V-S 

e’ 

e 

Using e instead of e’, still connects the graph, 
but produces a tree with smaller weights 

Kruskal’s algorithm 
Given a partition S, let edge e be the minimum cost 
edge that crosses the partition.  Every minimum 
spanning tree contains edge e. 
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Kruskal’s algorithm 
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Kruskal’s algorithm 
Add smallest edge that connects 
two sets not already connected 
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Kruskal’s algorithm 
Add smallest edge that connects 
two sets not already connected 

Correctness of Kruskal’s 
Never adds an edge that connects already connected 
vertices 

Always adds lowest cost edge to connect two sets.  By min 
cut property, that edge must be part of the MST 

Running time of Kruskal’s 
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Running time of Kruskal’s 

|V| calls to MakeSet 

O(|E| log |E|) 

2 |E| calls to FindSet 

|V| calls to Union 

Running time of Kruskal’s 

Disjoint set data structure 
O(|E| log |E|) + 

MakeSet FindSet 
|E| calls 

Union 
|V| calls 

Total 

Linked lists |V| O(|V| |E|) |V| O(|V||E| + |E| log |E|) 

O(|V| |E|) 

Linked lists + 
heuristics 

|V| O(|E| log |V|) |V| O(|E| log |V|+ |E| log |E|) 

O(|E| log |E| ) 

Prim’s algorithm Prim’s algorithm 
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Prim’s algorithm Prim’s algorithm 
Start at some root node and build out the MST by 
adding the lowest weighted edge at the frontier 

Prim’s 
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Prim’s 
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Prim’s 
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Prim’s 
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Correctness of Prim’s? 
Can we use the min-cut property? 

l  Given a partion S, let edge e be the minimum cost edge that 
crosses the partition.  Every minimum spanning tree contains 
edge e. 

 
Let S be the set of vertices visited so far 
 
The only time we add a new edge is if it’s the lowest weight 
edge from S to V-S 

Running time of Prim’s 
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Running time of Prim’s 

Θ(|V|) 

Θ(|V|) 

|V| calls to Extract-Min 

|E| calls to Decrease-Key 

Running time of Prim’s 

Same as Dijksta’s algorithm 

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total 

Array O(|V|) O(|V|2) O(|E|) O(|V|2) 

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|) 

Fib heap O(|V|) O(|V| log |V|) O(|E|) O(|V| log |V| + |E|) 

O(|E| log |V|) 

Kruskal’s: O(|E| log |E| ) 

 


