
4/23/13

1

Shortest Paths and
Minimum Spanning Trees

David Kauchak
cs302

Spring 2013

Admin

Can resubmit homeworks 12-15 for up to half
credit back

l  Due by the end of the week

Read book

A

B

C E

D

1

1

3

3

2
1

4

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

∞

4/23/13

2

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

0

Heap

A 0
B ∞
C ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

0

Heap

B ∞
C ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

0

Heap

B ∞
C ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
1

0

Heap

C 1
B ∞
D ∞
E ∞

4/23/13

3

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
1

0

Heap

C 1
B ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

3 ∞

∞
1

0

Heap

C 1
B 3
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

3 ∞

∞
1

0

Heap

C 1
B 3
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

3 ∞

∞
1

0

Heap

B 3
D ∞
E ∞

4/23/13

4

3

A

B

C E

D

1

1

3

2
1

4

3 ∞

∞
1

0

Heap

B 3
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

3 ∞

∞
1

0

Heap

B 3
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

∞
1

0

Heap

B 2
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

∞
1

0

Heap

B 2
D ∞
E ∞

4/23/13

5

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

5
1

0

Heap

B 2
E 5
D ∞

3

A

B

C E

D

1

1

3

2
1

4

2 5

3
1

0

Heap

E 3
D 5

3

A

B

C E

D

1

1

3

2
1

4

2 5

3
1

0

Heap

D 5

3

A

B

C E

D

1

1

3

2
1

4

2 5

3
1

0

Heap

4/23/13

6

A

B

C E

D

1

1
1

2 5

3
1

0

Heap

3

Is Dijkstra’s algorithm
correct?

Invariant:

Is Dijkstra’s algorithm
correct?

Invariant: For every vertex removed from the heap,
dist[v] is the actual shortest distance from s to v

proof?

Is Dijkstra’s algorithm
correct?
Invariant: For every vertex removed from the heap,
dist[v] is the actual shortest distance from s to v

l  The only time a vertex gets visited is when the
distance from s to that vertex is smaller than the
distance to any remaining vertex

l  Therefore, there cannot be any other path that hasn’t
been visited already that would result in a shorter path

4/23/13

7

Running time? Running time?

1 call to MakeHeap

Running time?

|V| iterations

Running time?

|V| calls

4/23/13

8

Running time?

O(|E|) calls

Running time?

Depends on the heap implementation

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total

Array O(|V|) O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

O(|E| log |V|)

Running time?

Depends on the heap implementation

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total

Array O(|V|) O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

O(|E| log |V|)

Is this an improvement? If |E| < |V|2 / log |V|

Running time?

Depends on the heap implementation

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total

Array O(|V|) O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

Fib heap O(|V|) O(|V| log |V|) O(|E|) O(|V| log |V| + |E|)

O(|E| log |V|)

4/23/13

9

What about Dijkstra’s on…?

A

B

C E

D 1
1

-10

5
10

What about Dijkstra’s on…?

A

B

C E

D 1
1

5
10

Dijkstra’s algorithm only
works for positive edge
weights

Bounding the distance
Another invariant: For each vertex v, dist[v] is an upper
bound on the actual shortest distance

Is this a valid invariant?

Bounding the distance
Another invariant: For each vertex v, dist[v] is an upper
bound on the actual shortest distance

l  start off at ∞
l  only update the value if we find a shorter distance

An update procedure

)},(][],[min{][vuwudistvdistvdist +=

4/23/13

10

Can we ever go wrong applying this update rule?
l  We can apply this rule as many times as we want and

will never underestimate dist[v]

When will dist[v] be right?
l  If u is along the shortest path to v and dist[u] is correct

)},(][],[min{][vuwudistvdistvdist +=

dist[v] will be right if u is along the shortest path to v
and dist[u] is correct

Consider the shortest path from s to v

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

dist[v] will be right if u is along the shortest path to v
and dist[u] is correct

What happens if we update all of the vertices with
the above update?

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

dist[v] will be right if u is along the shortest path to v
and dist[u] is correct

What happens if we update all of the vertices with
the above update?

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct

4/23/13

11

dist[v] will be right if u is along the shortest path to v
and dist[u] is correct

What happens if we update all of the vertices with
the above update?

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct

dist[v] will be right if u is along the shortest path to v
and dist[u] is correct

Does the order that we update the vertices matter?

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct

dist[v] will be right if u is along the shortest path to v and
dist[u] is correct

How many times do we have to do this for vertex pi to have
the correct shortest path from s?

l  i times

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

dist[v] will be right if u is along the shortest path to v and
dist[u] is correct

How many times do we have to do this for vertex pi to have
the correct shortest path from s?

l  i times

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct

4/23/13

12

dist[v] will be right if u is along the shortest path to v and
dist[u] is correct

How many times do we have to do this for vertex pi to have
the correct shortest path from s?

l  i times

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct correct

dist[v] will be right if u is along the shortest path to v and
dist[u] is correct

How many times do we have to do this for vertex pi to have
the correct shortest path from s?

l  i times

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct correct correct

dist[v] will be right if u is along the shortest path to v and
dist[u] is correct

How many times do we have to do this for vertex pi to have
the correct shortest path from s?

l  i times

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct correct correct …

dist[v] will be right if u is along the shortest path to v and
dist[u] is correct

What is the longest (vertex-wise) the path from s to any
node v can be?

l  |V| - 1 edges/vertices

)},(][],[min{][vuwudistvdistvdist +=

s p1 v p2 p3 pk

correct correct correct correct …

4/23/13

13

Bellman-Ford algorithm Bellman-Ford algorithm

Initialize all the
distances

iterate over all
edges/vertices and
apply update rule

do it |V| -1 times

Bellman-Ford algorithm

check for negative
cycles

Negative cycles

A

B

C E

D 1
1

-10

5
10

3

What is the shortest path
from a to e?

4/23/13

14

Bellman-Ford algorithm Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A:

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A: 3

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A: 3

B:

4/23/13

15

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A: 3

B: 5

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A: 3

B: 5

D:

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

How many edges is
the shortest path
from s to:

A: 3

B: 5

D: 7

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 ∞

∞

∞

∞ ∞

∞

∞

Iteration: 0

4/23/13

16

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 10

∞

∞

∞ ∞

∞

8

Iteration: 1

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 10

∞

∞

∞ 12

9

8

Iteration: 2

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 5

10

∞

∞ 8

9

8

Iteration: 3

A has the correct
distance and path

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 5

6

11

∞ 7

9

8

Iteration: 4

4/23/13

17

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 5

5

7

14 7

9

8

Iteration: 5

B has the correct
distance and path

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 5

5

6

10 7

9

8

Iteration: 6

Bellman-Ford algorithm

G

S

F

E

A

D

B

C

10

8

1

-1

-1

3

1

1

2

-2

-4

0 5

5

6

9 7

9

8

Iteration: 7

D (and all other
nodes) have the
correct distance
and path

Correctness of Bellman-Ford
Loop invariant:

4/23/13

18

Correctness of Bellman-Ford
Loop invariant: After iteration i, all vertices with
shortest paths from s of length i edges or less have
correct distances

Runtime of Bellman-Ford

O(|V| |E|)

Runtime of Bellman-Ford

Can you modify the algorithm to run
faster (in some circumstances)?

Single source shortest paths
All of the shortest path algorithms we’ve looked at
today are call “single source shortest paths”
algorithms

Why?

4/23/13

19

All pairs shortest paths
Simple approach

l  Call Bellman-Ford |V| times
l  O(|V|2 |E|)

Floyd-Warshall – Θ(|V|3)

Johnson’s algorithm – O(|V|2 log |V| + |V| |E|)

Minimum spanning trees
What is the lowest weight set of edges that connects all
vertices of an undirected graph with positive weights

Input: An undirected, positive weight graph, G=(V,E)

Output: A tree T=(V,E’) where E’ ⊆ E that minimizes

∑
∈

=
'

)(
Ee

ewTweight

MST example

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

A

B D

C

4

1

2

F

E

5
4

MSTs

Can an MST have a cycle?

A

B D

C

4

1

2

F

E

5
4

4

4/23/13

20

MSTs

Can an MST have a cycle?

A

B D

C

4

1

2

F

E

5
4

Applications?
Connectivity

l  Networks (e.g. communications)
l  Circuit design/wiring

hub/spoke models (e.g. flights, transportation)

Traveling salesman problem?

Algorithm ideas?

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

A

B D

C

4

1

2

F

E

5
4

Cuts
A cut is a partitioning of the vertices into two sets S and V-S

An edge “crosses” the cut if it connects a vertex u∈V and
v∈V-S

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

4/23/13

21

Minimum cut property
Given a partion S, let edge e be the minimum
cost edge that crosses the partition. Every
minimum spanning tree contains edge e.

Prove this!

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

Minimum cut property
Given a partion S, let edge e be the minimum
cost edge that crosses the partition. Every
minimum spanning tree contains edge e.

S V-S

e’

e

Consider an MST with edge e’ that is not the minimum edge

Minimum cut property
Given a partion S, let edge e be the minimum
cost edge that crosses the partition. Every
minimum spanning tree contains edge e.

S V-S

e’

e

Using e instead of e’, still connects the graph,
but produces a tree with smaller weights

Kruskal’s algorithm
Given a partition S, let edge e be the minimum cost
edge that crosses the partition. Every minimum
spanning tree contains edge e.

4/23/13

22

Kruskal’s algorithm

A

B D

C

4

1

2
3

4
F

E

5 4

6

4

G

MST
A

B D

C

F

E

Add smallest edge that connects
two sets not already connected

A

B D

C

4

1

2
3

4
F

E

5 4

6

4

G

MST
A

B D

C
1

F

E

Add smallest edge that connects
two sets not already connected

Kruskal’s algorithm

A

B D

C

4

1

2
3

4
F

E

5 4

6

4

G

MST
A

B D

C
1

2

F

E

Add smallest edge that connects
two sets not already connected

Kruskal’s algorithm

A

B D

C

4

1

2
3

4
F

E

5 4

6

4

G

MST
A

B D

C

4

1

2

F

E

Kruskal’s algorithm
Add smallest edge that connects
two sets not already connected

4/23/13

23

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

G

MST
A

B D

C

4

1

2

F

E

4

Kruskal’s algorithm
Add smallest edge that connects
two sets not already connected

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

G

MST
A

B D

C

4

1

2

F

E

5
4

Kruskal’s algorithm
Add smallest edge that connects
two sets not already connected

Correctness of Kruskal’s
Never adds an edge that connects already connected
vertices

Always adds lowest cost edge to connect two sets. By min
cut property, that edge must be part of the MST

Running time of Kruskal’s

4/23/13

24

Running time of Kruskal’s

|V| calls to MakeSet

O(|E| log |E|)

2 |E| calls to FindSet

|V| calls to Union

Running time of Kruskal’s

Disjoint set data structure
O(|E| log |E|) +

MakeSet FindSet
|E| calls

Union
|V| calls

Total

Linked lists |V| O(|V| |E|) |V| O(|V||E| + |E| log |E|)

O(|V| |E|)

Linked lists +
heuristics

|V| O(|E| log |V|) |V| O(|E| log |V|+ |E| log |E|)

O(|E| log |E|)

Prim’s algorithm Prim’s algorithm

4/23/13

25

Prim’s algorithm Prim’s algorithm
Start at some root node and build out the MST by
adding the lowest weighted edge at the frontier

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

∞ ∞ ∞

∞ ∞ 0

4/23/13

26

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

∞ 4 5

∞ 6 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

∞ 4 5

∞ 6 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

4/23/13

27

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

4/23/13

28

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Prim’s

A

B D

C

4

1

2
3

4
F

E

5 4

6

4 MST

A

B D

C

F

E

1 4 5

4 2 0

Correctness of Prim’s?
Can we use the min-cut property?

l  Given a partion S, let edge e be the minimum cost edge that
crosses the partition. Every minimum spanning tree contains
edge e.

Let S be the set of vertices visited so far

The only time we add a new edge is if it’s the lowest weight
edge from S to V-S

Running time of Prim’s

4/23/13

29

Running time of Prim’s

Θ(|V|)

Θ(|V|)

|V| calls to Extract-Min

|E| calls to Decrease-Key

Running time of Prim’s

Same as Dijksta’s algorithm

1 MakeHeap |V| ExtractMin |E| DecreaseKey Total

Array O(|V|) O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V|) O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

Fib heap O(|V|) O(|V| log |V|) O(|E|) O(|V| log |V| + |E|)

O(|E| log |V|)

Kruskal’s: O(|E| log |E|)

