
4/18/13

1

Graphs +
Shortest Paths

David Kauchak
cs302

Spring 2013

Admin

Tree BFS Running time of Tree BFS
Adjacency list

l  How many times does it visit each vertex?
l  How many times is each edge traversed?
l  O(|V|+|E|)

Adjacency matrix
l  For each vertex visited, how much work is done?
l  O(|V|2)

4/18/13

2

BFS Recursively

Hard to do!

BFS for graphs
What needs to change for graphs?

Need to make sure we don’t visit a node multiple times

B

D E

F

A

C

G

distance variable keeps
track of how far from
the starting node and
whether we’ve seen the
node yet

B

D E

F

A

C

G

B

D E

F

A

C

G

4/18/13

3

set all nodes
as unseen

B

D E

F

A

C

G

check if the node
has been seen

B

D E

F

A

C

G

set the node as seen
and record distance

B

D E

F

A

C

G

B

D E

F

A

C

G

∞ ∞

∞

∞ ∞

∞ ∞

4/18/13

4

B

D E

F

A

C

G

0 ∞

∞

∞ ∞

∞ ∞

Q: A

B

D E

F

A

C

G

0 ∞

∞

∞ ∞

∞ ∞

Q:

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q: D, E, B

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q: E, B

4/18/13

5

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q: B

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q: B

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q:

B

D E

F

A

C

G

0 1

∞

∞ ∞

1 1

Q:

4/18/13

6

B

D E

F

A

C

G

0 1

2

2 ∞

1 1

Q: F, C

B

D E

F

A

C

G

0 1

2

2 3

1 1

B

D E

F

A

C

G

0 1

2

2 3

1 1

B

D E

F

A

C

G

0 1

2

2 3

1 1

4/18/13

7

Is BFS correct?
Does it visit all nodes reachable from the starting node?
Can you prove it?

Assume we “miss” some node ‘u’, i.e. a path exists, but
we don’t visit ‘u’

S … U

Is BFS correct?
Does it visit all nodes reachable from the starting node?
Can you prove it?

Find the last node along the path to ‘u’ that was visited

S … U … Z W

why do we know that
such a node exists?

Is BFS correct?
Does it visit all nodes reachable from the starting node?
Can you prove it?

We visited ‘z’ but not ‘w’, which is a contradiction, given
the pseudocode

S … U … Z W

contradiction

Is BFS correct?
Does it correctly label each node with the shortest
distance from the starting node?

4/18/13

8

Is BFS correct?
Does it correctly label each node with the shortest
distance from the starting node?

Assume the algorithm labels a node with a longer
distance. Call that node ‘u’

S … U

Is BFS correct?
Does it correctly label each node with the shortest
distance from the starting node?

Find the last node in the path with the correct distance

S … U … Z W

correct incorrect

Is BFS correct?
Does it correctly label each node with the shortest
distance from the starting node?

Find the last node in the path with the correct distance

S … U … Z W

contradiction

Runtime of BFS
Nothing changed over our analysis of TreeBFS

4/18/13

9

Runtime of BFS

Adjacency list: O(|V| + |E|)
Adjacency matrix: O(|V|2)

Depth First Search (DFS)

Depth First Search (DFS) Tree DFS

A

B

C

E D

F G

4/18/13

10

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

Frontier?

4/18/13

11

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

Tree DFS

A

B

C

E D

F G

4/18/13

12

DFS on graphs DFS on graphs

mark all nodes as
not visited

DFS on graphs

until all nodes have been
visited repeatedly call
DFS-Visit

DFS on graphs

What happened
to the stack?

4/18/13

13

What does DFS do?
Finds connected components

Each call to DFS-Visit from DFS starts exploring a new set
of connected components

Helps us understand the structure/connectedness of a
graph

Is DFS correct?

Does DFS visit all of the nodes in a graph?

Running time?

Like BFS
l  Visits each node exactly once
l  Processes each edge exactly twice (for an

undirected graph)
l  O(|V|+|E|)

DAGs

Can represent dependency graphs

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

4/18/13

14

Topological sort
A linear ordering of all the vertices such that for all
edges (u,v) ∈ E, u appears before v in the ordering

An ordering of the nodes that “obeys” the
dependencies, i.e. an activity can’t happen until it’s
dependent activities have happened

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

underwear

pants

belt

watch

shirt

tie

socks

shoes

jacket

Topological sort

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

4/18/13

15

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

4/18/13

16

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

Topological sort

underwear

pants

belt

shirt

tie

jacket

socks

shoes

watch

…

Running time? Running time?

O(|V|+|E|)

4/18/13

17

Running time?

O(E) overall

Running time?

How many calls? |V|

Running time?

Overall running time?

O(|V|2+|V| |E|)

Can we do better?

4/18/13

18

Topological sort 2 Topological sort 2

Topological sort 2 Topological sort 2

4/18/13

19

Running time?
How many times do we process each node?
How many times do we process each edge?

O(|V| + |E|)

Connectedness

Given an undirected graph, for every node
u ∈ V, can we reach all other nodes in the
graph?

Run BFS or DFS-Visit (one pass) and mark
nodes as we visit them. If we visit all nodes,
return true, otherwise false.

Running time: O(|V| + |E|)

Strongly connected

Given a directed graph, can we reach any node
v from any other node u?

Ideas?

Transpose of a graph
Given a graph G, we can calculate the transpose
of a graph GR by reversing the direction of all the
edges

A

B

C

E
D

A

B

C

E
D

G GR

Running time to calculate GR? O(|V| + |E|)

4/18/13

20

Strongly connected Is it correct?
What do we know after the first pass?

l  Starting at u, we can reach every node

What do we know after the second pass?

l  All nodes can reach u. Why?
l  We can get from u to every node in GR, therefore, if we reverse

the edges (i.e. G), then we have a path from every node to u

Which means that any node can reach any other node.
Given any two nodes s and t we can create a path
through u

s u t … …

Runtime?

O(|V| + |E|)

O(|V| + |E|)

O(|V| + |E|)

O(|V| + |E|)

O(|V|)

O(|V|)

Detecting cycles
Undirected graph

l  BFS or DFS. If we reach a node we’ve seen already, then we’ve
found a cycle

Directed graph

A

B
D

have to be careful

4/18/13

21

Detecting cycles
Undirected graph

l  BFS or DFS. If we reach a node we’ve seen already,
then we’ve found a cycle

Directed graph

l  Call TopologicalSort
l  If the length of the list returned ≠ |V| then a cycle

exists

Shortest paths

What is the shortest path from a to d?

A

B

C E

D

Shortest paths

BFS

A

B

C E

D

Shortest paths

What is the shortest path from a to d?

A

B

C E

D

1

1

3

2

2
3

4

4/18/13

22

Shortest paths

We can still use BFS

A

B

C E

D

1

1

3

2

2
3

4

Shortest paths

We can still use BFS

A

B

C E

D

1

1

3

2

2
3

4

A

B

C E

D

Shortest paths

We can still use BFS

A

B

C E

D

Shortest paths

What is the problem?

A

B

C E

D

4/18/13

23

Shortest paths
Running time is dependent on the weights

A

B

C 4

1

2

A

B

C 200

50

100

Shortest paths

A

B

C 200

50

100

A

B

C

Shortest paths

A

B

C

Shortest paths

A

B

C

4/18/13

24

Shortest paths

A

B

C

Nothing will change as we expand the
frontier until we’ve gone out 100 levels

Dijkstra’s algorithm

Dijkstra’s algorithm Dijkstra’s algorithm
prev keeps track of
the shortest path

4/18/13

25

Dijkstra’s algorithm Dijkstra’s algorithm

Dijkstra’s algorithm Single source shortest paths
All of the shortest path algorithms we’ll look at
today are call “single source shortest paths”
algorithms

Why?

4/18/13

26

A

B

C E

D

1

1

3

3

2
1

4

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

∞

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

0

Heap

A 0
B ∞
C ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

0

Heap

B ∞
C ∞
D ∞
E ∞

4/18/13

27

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
∞

0

Heap

B ∞
C ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
1

0

Heap

C 1
B ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

∞ ∞

∞
1

0

Heap

C 1
B ∞
D ∞
E ∞

A

B

C E

D

1

1

3

3

2
1

4

3 ∞

∞
1

0

Heap

C 1
B 3
D ∞
E ∞

4/18/13

28

A

B

C E

D

1

1

3

3

2
1

4

3 ∞

∞
1

0

Heap

C 1
B 3
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

3 ∞

∞
1

0

Heap

B 3
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

3 ∞

∞
1

0

Heap

B 3
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

3 ∞

∞
1

0

Heap

B 3
D ∞
E ∞

4/18/13

29

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

∞
1

0

Heap

B 2
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

∞
1

0

Heap

B 2
D ∞
E ∞

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

5
1

0

Heap

B 2
E 5
D ∞

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

5
1

0

Heap

B 2
E 5
D ∞

Frontier?

4/18/13

30

3

A

B

C E

D

1

1

3

2
1

4

2 ∞

5
1

0

Heap

B 2
E 5
D ∞

All nodes reachable
from starting node
within a given distance

3

A

B

C E

D

1

1

3

2
1

4

2 5

3
1

0

Heap

E 3
D 5

3

A

B

C E

D

1

1

3

2
1

4

2 5

3
1

0

Heap

D 5

3

A

B

C E

D

1

1

3

2
1

4

2 5

3
1

0

Heap

4/18/13

31

A

B

C E

D

1

1
1

2 5

3
1

0

Heap

3

