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Admin 

Tree BFS Running time of Tree BFS 
Adjacency list 

l  How many times does it visit each vertex? 
l  How many times is each edge traversed? 
l  O(|V|+|E|) 

Adjacency matrix 
l  For each vertex visited, how much work is done? 
l  O(|V|2) 
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BFS Recursively 

Hard to do! 

BFS for graphs 
What needs to change for graphs? 
 
Need to make sure we don’t visit a node multiple times 
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set all nodes 
as unseen 
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Is BFS correct? 
Does it visit all nodes reachable from the starting node? 
Can you prove it? 
 
Assume we “miss” some node ‘u’, i.e. a path exists, but 
we don’t visit ‘u’ 

S … U 

Is BFS correct? 
Does it visit all nodes reachable from the starting node? 
Can you prove it? 
 
Find the last node along the path to ‘u’ that was visited 

S … U … Z W

why do we know that 
such a node exists? 

Is BFS correct? 
Does it visit all nodes reachable from the starting node? 
Can you prove it? 
 
We visited ‘z’ but not ‘w’, which is a contradiction, given 
the pseudocode 

S … U … Z W

contradiction 

Is BFS correct? 
Does it correctly label each node with the shortest 
distance from the starting node? 
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Is BFS correct? 
Does it correctly label each node with the shortest 
distance from the starting node? 

Assume the algorithm labels a node with a longer 
distance.  Call that node ‘u’ 

S … U 

Is BFS correct? 
Does it correctly label each node with the shortest 
distance from the starting node? 

Find the last node in the path with the correct distance  

S … U … Z W

correct incorrect 

Is BFS correct? 
Does it correctly label each node with the shortest 
distance from the starting node? 

Find the last node in the path with the correct distance  

S … U … Z W

contradiction 

Runtime of BFS 
Nothing changed over our analysis of TreeBFS  



4/18/13 

9 

Runtime of BFS 

Adjacency list: O(|V| + |E|) 
Adjacency matrix: O(|V|2) 

Depth First Search (DFS) 

Depth First Search (DFS) Tree DFS 
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Tree DFS 
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Frontier? 
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Tree DFS 
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DFS on graphs DFS on graphs 

mark all nodes as 
not visited 

DFS on graphs 

until all nodes have been 
visited repeatedly call 
DFS-Visit 

DFS on graphs 

What happened 
to the stack? 
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What does DFS do? 
Finds connected components 

Each call to DFS-Visit from DFS starts exploring a new set 
of connected components 

Helps us understand the structure/connectedness of a 
graph 

Is DFS correct? 

Does DFS visit all of the nodes in a graph? 

Running time? 

Like BFS 
l  Visits each node exactly once 
l  Processes each edge exactly twice (for an 

undirected graph) 
l  O(|V|+|E|) 

DAGs 

Can represent dependency graphs 
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Topological sort 
A linear ordering of all the vertices such that for all 
edges (u,v) ∈ E, u appears before v in the ordering 
 
An ordering of the nodes that “obeys” the 
dependencies, i.e. an activity can’t happen until it’s 
dependent activities have happened 
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Topological sort 
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Topological sort 
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Running time? Running time? 

O(|V|+|E|) 
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Running time? 

O(E) overall 

Running time? 

How many calls? |V| 

Running time? 

Overall running time? 

O(|V|2+|V| |E|) 

Can we do better? 
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Topological sort 2 Topological sort 2 

Topological sort 2 Topological sort 2 
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Running time? 
How many times do we process each node? 
How many times do we process each edge? 
 
O(|V| + |E|) 

Connectedness 

Given an undirected graph, for every node 
u ∈ V, can we reach all other nodes in the 
graph? 

Run BFS or DFS-Visit (one pass) and mark 
nodes as we visit them.  If we visit all nodes, 
return true, otherwise false. 

Running time:  O(|V| + |E|)  

Strongly connected 

Given a directed graph, can we reach any node 
v from any other node u? 

Ideas? 

Transpose of a graph 
Given a graph G, we can calculate the transpose 
of a graph GR by reversing the direction of all the 
edges 
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G GR 

Running time to calculate GR? O(|V| + |E|) 
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Strongly connected Is it correct? 
What do we know after the first pass? 

l  Starting at u, we can reach every node 
 
What do we know after the second pass? 

l  All nodes can reach u.  Why? 
l  We can get from u to every node in GR, therefore, if we reverse 

the edges (i.e. G), then we have a path from every node to u 
 
Which means that any node can reach any other node.  
Given any two nodes s and t we can create a path 
through u 

s u t … …

Runtime? 

O(|V| + |E|) 

O(|V| + |E|) 

O(|V| + |E|) 

O(|V| + |E|) 

O(|V|) 

O(|V|) 

Detecting cycles 
Undirected graph 

l  BFS or DFS.  If we reach a node we’ve seen already, then we’ve 
found a cycle 

 
Directed graph 

A 

B 
D 

have to be careful 
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Detecting cycles 
Undirected graph 

l  BFS or DFS.  If we reach a node we’ve seen already, 
then we’ve found a cycle 

 
Directed graph 

l  Call TopologicalSort 
l  If the length of the list returned ≠ |V| then a cycle 

exists 

Shortest paths 

What is the shortest path from a to d? 
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D 

Shortest paths 

BFS 
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Shortest paths 

What is the shortest path from a to d? 
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Shortest paths 

We can still use BFS 
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Shortest paths 
Running time is dependent on the weights 
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Shortest paths 

A 

B 

C 

Nothing will change as we expand the 
frontier until we’ve gone out 100 levels 

Dijkstra’s algorithm 

Dijkstra’s algorithm Dijkstra’s algorithm 
prev keeps track of  
the shortest path 
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Dijkstra’s algorithm Dijkstra’s algorithm 

Dijkstra’s algorithm Single source shortest paths 
All of the shortest path algorithms we’ll look at 
today are call “single source shortest paths” 
algorithms 
 
Why? 
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