
4/9/13 

1 

Dynamic 
Programming 

David Kauchak 
cs302 

Spring 2013 

Administative 

Dynamic programming 
One of the most important algorithm tools! 
 
Very common interview question 

Method for solving problems where optimal solutions can 
be defined in terms of optimal solutions to sub-problems  

 AND 
the sub-problems are overlapping 

Fibonacci numbers 
1, 1, 2, 3, 5, 8, 13, 21, 34, … 
What is the recurrence for the nth Fibonacci 
number? 

F(n) = F(n-1) + F(n-2) 

The solution for n is defined with respect to the 
solution to smaller problems (n-1 and n-2) 
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Fibonacci: a first attempt Is it correct? 

F(n) = F(n-1) + F(n-2) 

Running time 

Each call creates two recursive calls 
 
Each call reduces the size of the problem by 1 or 2 
 
Creates a full binary of depth n 
 
O(2n) 

Can we do better? 
Fib(n) 

Fib(n-1) Fib(n-2) 

Fib(n-2) Fib(n-3) 

Fib(n-3) Fib(n-4) Fib(n-4) Fib(n-5) 

Fib(n-3) Fib(n-4) 

Fib(n-4) Fib(n-5) Fib(n-5) Fib(n-6) 
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A lot of repeated work! 
Fib(n) 

Fib(n-1) Fib(n-2) 

Fib(n-2) Fib(n-3) 

Fib(n-3) Fib(n-4) Fib(n-4) Fib(n-5) 

Fib(n-3) Fib(n-4) 

Fib(n-4) Fib(n-5) Fib(n-5) Fib(n-6) 

Identifying a dynamic 
programming problem 
The solution can be defined with respect to 
solutions to subproblems 

The subproblems created are overlapping, that is 
we see the same subproblems repeated 

Overlapping sub-problems 

… 

divide and 
conquer 

dynamic  
programming 

Creating a dynamic 
programming solution 
Step 1: Identify a solution to the problem with respect to smaller 
subproblems (pretend like you have a solver, but it only works on 
smaller problems): 

l  F(n) = F(n-1) + F(n-2) 

Step 2: bottom up - start with solutions to the smallest problems 
and build solutions to the larger problems use an array to 

store solutions 
to subproblems 
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Is it correct? 

F(n) = F(n-1) + F(n-2) 

Running time? 

Θ(n) 

Counting binary search trees 
How many unique binary search trees can be 
created using the numbers 1 through n? 

4 

2 

 1 3 6 

5 

Step 1:  
What is the subproblem? 
Assume we have some black box solver (call it T) that 
can give us the answer to smaller subproblems 
 
How can we use the answer from this to answer our 
question? 
 
How many options for the root are there? 
 

 1  2  3  n 

…
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Subproblems 
 i 

How many trees have i as the root? 

Subproblems 
 i 

1, 2, …, i-1 i+1, i+2, …, n 

? 

Subproblems 
 i 

1, 2, …, i-1 i+1, i+2, …, n 

T(i-1) 

subproblem of 
size i-1 

? 

Subproblems 
 i 

1, 2, …, i-1 i+1, i+2, …, n 

T(i-1) Number of trees for i+1, i+2, …, i+n 
is the same as the number of trees 
from 1, 2, …, n-i 
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Subproblems 
 i 

1, 2, …, i-1 i+1, i+2, …, n 

T(i-1) T(n-i) 

Given solutions for T(i-1) and T(n-i) how 
many trees are there with i as the root? 

Subproblems 
 i 

1, 2, …, i-1 i+1, i+2, …, n 

T(i-1) T(n-i) 

T(i) = T(i-1) * T(n-i) 

Step 1: define the answer with 
respect to subproblems 

T(i) = T(i-1) * T(n-i) 

∑ =
−−=

n

i
inTiTnT

1
)(*)1()(

Is there a problem? 

As with Fibonacci, we’re 
repeating a lot of work 
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Step 2:  Generate a solution 
from the bottom-up 

0   1   2   3   4   5   …  n 

0   1   2   3   4   5   …  n 
1   1 

0   1   2   3   4   5   …  n 
1   1 

c[0]*c[1] + c[1]*c[0] 
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0   1   2   3   4   5   …  n 
1   1 

2 

1 

1 

2 

c[0]*c[1] + c[1]*c[0] 

0   1   2   3   4   5   …  n 
1   1   2 

0   1   2   3   4   5   …  n 
1   1   2 

c[0]*c[2] + c[1]*c[1] + c[2]*c[0] 

1 2 3 

0   1   2   3   4   5   …  n 
1   1   2   5 
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0   1   2   3   4   5   …  n 
1   1   2   5  … 

Running time? 

Θ(n2) 

Longest common 
subsequence (LCS) 

X = A B A C D A B A B 

ABA? 

For a sequence X = x1, x2, …, xn, a subsequence 
is a subset of the sequence defined by a set of 
increasing indices (i1, i2, …, ik) where  
1 ≤ i1 < i2 < … < ik ≤ n 

Longest common 
subsequence (LCS) 
For a sequence X = x1, x2, …, xn, a subsequence 
is a subset of the sequence defined by a set of 
increasing indices (i1, i2, …, ik) where  
1 ≤ i1 < i2 < … < ik ≤ n 

X = A B A C D A B A B 

ABA 
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Longest common 
subsequence (LCS) 

X = A B A C D A B A B 

ACA? 

For a sequence X = x1, x2, …, xn, a subsequence 
is a subset of the sequence defined by a set of 
increasing indices (i1, i2, …, ik) where  
1 ≤ i1 < i2 < … < ik ≤ n 

Longest common 
subsequence (LCS) 

X = A B A C D A B A B 

ACA 

For a sequence X = x1, x2, …, xn, a subsequence 
is a subset of the sequence defined by a set of 
increasing indices (i1, i2, …, ik) where  
1 ≤ i1 < i2 < … < ik ≤ n 

Longest common 
subsequence (LCS) 

X = A B A C D A B A B 

DCA? 

For a sequence X = x1, x2, …, xn, a subsequence 
is a subset of the sequence defined by a set of 
increasing indices (i1, i2, …, ik) where  
1 ≤ i1 < i2 < … < ik ≤ n 

Longest common 
subsequence (LCS) 

X = A B A C D A B A B 

DCA 

For a sequence X = x1, x2, …, xn, a subsequence 
is a subset of the sequence defined by a set of 
increasing indices (i1, i2, …, ik) where  
1 ≤ i1 < i2 < … < ik ≤ n 
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Longest common 
subsequence (LCS) 

X = A B A C D A B A B 

AADAA? 

For a sequence X = x1, x2, …, xn, a subsequence 
is a subset of the sequence defined by a set of 
increasing indices (i1, i2, …, ik) where  
1 ≤ i1 < i2 < … < ik ≤ n 

Longest common 
subsequence (LCS) 

X = A B A C D A B A B 

AADAA 

For a sequence X = x1, x2, …, xn, a subsequence 
is a subset of the sequence defined by a set of 
increasing indices (i1, i2, …, ik) where  
1 ≤ i1 < i2 < … < ik ≤ n 

LCS problem 
Given two sequences X and Y, a common subsequence 
is a subsequence that occurs in both X and Y 
Given two sequences X = x1, x2, …, xn and  
Y = y1, y2, …, yn,  
 
What is the longest common subsequence? 

X = A B C B D A B 

Y = B D C A B A 

LCS problem 
Given two sequences X and Y, a common subsequence 
is a subsequence that occurs in both X and Y 
Given two sequences X = x1, x2, …, xn and  
Y = y1, y2, …, yn,  
 
What is the longest common subsequence? 

X = A B C B D A B 

Y = B D C A B A 
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Step 1: Define the problem 
with respect to subproblems 

X = A B C B D A B 

Y = B D C A B A 

Assume you have a solver for smaller problems 

Step 1: Define the problem 
with respect to subproblems 

X = A B C B D A ? 

Y = B D C A B ? 

Is the last character part of the LCS? 

Step 1: Define the problem 
with respect to subproblems 

X = A B C B D A ? 

Y = B D C A B ? 

Two cases:  either the characters 
are the same or they’re different 

Step 1: Define the problem 
with respect to subproblems 

X = A B C B D A A 

Y = B D C A B A 

If they’re the same 

The characters are 
part of the LCS 

nmn xYXLCSYXLCS += −− ),(),( 1...11...1

LCS 

What is the recursive 
relationship? 
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Step 1: Define the problem 
with respect to subproblems 

X = A B C B D A B 

Y = B D C A B A 

If they’re different 

LCS 

),(),( 1...1 YXLCSYXLCS n−=

Step 1: Define the problem 
with respect to subproblems 

X = A B C B D A B 

Y = B D C A B A 

If they’re different 

LCS 

),(),( 1...1 −= mYXLCSYXLCS

Step 1: Define the problem 
with respect to subproblems 

X = A B C B D A B 

Y = B D C A B A 

If they’re different 

X = A B C B D A B 
Y = B D C A B A 

? 

Step 1: Define the problem 
with respect to subproblems 

X = A B C B D A B 

Y = B D C A B A 

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

(for now, let’s just worry about counting the length of the LCS) 
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Step 2: Build the solution from 
the bottom up 

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

What types of subproblem 
solutions do we need to store? 

LCS(X1…j, Y1…k) 

two different indices 

Step 2: Build the solution from 
the bottom up 

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

What types of subproblem 
solutions do we need to store? 

LCS(X1…j, Y1…k) 

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0  xi 
1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

For Fibonacci and tree counting, 
we had to initialize some entries in 
the array.  Any here? 

0  xi 
1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

0  0  0  0 0 0  0 
0 
0 
0 
0 
0 
0 
0 

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

Need to initialize values within 1 
smaller in either dimension. 
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0  xi 
1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

0  0  0  0 0 0  0 
0  ? 
0 
0 
0 
0 
0 
0 

LCS(A, B) 

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0  xi 
1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

0  0  0  0 0 0  0 
0  0 
0 
0 
0 
0 
0 
0 

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0  xi 
1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

0  0  0  0 0 0  0 
0  0  0  0 ? 
0 
0 
0 
0 
0 
0 

LCS(A, BDCA) 

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0  xi 
1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

0  0  0  0 0 0  0 
0  0  0  0 1 
0 
0 
0 
0 
0 
0 

LCS(A, BDCA) 

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji
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0  xi 
1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

0  0  0  0 0 0  0 
0  0  0  0 1 1  1 
0  1  1  1 1 2  2 
0  1  1  2 2 2  2 
0  1  1  2 2 ? 
0 
0 
0 

LCS(ABCB, BDCAB) 

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0  xi 
1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

0  0  0  0 0 0  0 
0  0  0  0 1 1  1 
0  1  1  1 1 2  2 
0  1  1  2 2 2  2 
0  1  1  2 2 3 
0 
0 
0 

LCS(ABCB, BDCAB) 

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0  xi 
1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

0  0  0  0 0 0  0 
0  0  0  0 1 1  1 
0  1  1  1 1 2  2 
0  1  1  2 2 2  2 
0  1  1  2 2 3  3 
0  1  2  2 2 3  3 
0  1  2  2 3 3  4 
0  1  2  2 3 4  4 

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

Where’s the 
final answer? 

The algorithm 
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The algorithm 

Base case initialization 

The algorithm 

Fill in the matrix 

The algorithm The algorithm 
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The algorithm Running time? 

Θ(nm) 

Keeping track of the solution 
Our LCS algorithm only calculated the length of the 
LCS between X and Y 
What if we wanted to know the actual sequence? 
 
Keep track of this as well… 0  xi 

1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

0  0  0  0 0 0  0 
0  0  0  0 1 1  1 
0  1  1  1 1 2  2 
0  1  1  2 2 2  2 
0  1  1  2 2 3  3 
0  1  2  2 2 3  3 
0  1  2  2 3 3  4 
0  1  2  2 3 4  4 

⎩
⎨
⎧

−−

=+
=

otherwise]1,[],,1[max(
 f],[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

We can follow the 
arrows to generate 
the solution 
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0  xi 
1  A 
2  B 
3  C 
4  B 
5  D 
6  A 
7  B 

0  1  2  3 4  5  6 
yj  B D C A B A i 

j 

0  0  0  0 0 0  0 
0  0  0  0 1 1  1 
0  1  1  1 1 2  2 
0  1  1  2 2 2  2 
0  1  1  2 2 3  3 
0  1  2  2 2 3  3 
0  1  2  2 3 3  4 
0  1  2  2 3 4  4 

⎩
⎨
⎧

−−

=+
=

otherwise]1,[],,1[max(
 f],[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

We can follow the 
arrows to generate 
the solution 

BCBA 


