
4/9/13

1

Dynamic
Programming

David Kauchak
cs302

Spring 2013

Administative

Dynamic programming
One of the most important algorithm tools!

Very common interview question

Method for solving problems where optimal solutions can
be defined in terms of optimal solutions to sub-problems

 AND
the sub-problems are overlapping

Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, 34, …
What is the recurrence for the nth Fibonacci
number?

F(n) = F(n-1) + F(n-2)

The solution for n is defined with respect to the
solution to smaller problems (n-1 and n-2)

4/9/13

2

Fibonacci: a first attempt Is it correct?

F(n) = F(n-1) + F(n-2)

Running time

Each call creates two recursive calls

Each call reduces the size of the problem by 1 or 2

Creates a full binary of depth n

O(2n)

Can we do better?
Fib(n)

Fib(n-1) Fib(n-2)

Fib(n-2) Fib(n-3)

Fib(n-3) Fib(n-4) Fib(n-4) Fib(n-5)

Fib(n-3) Fib(n-4)

Fib(n-4) Fib(n-5) Fib(n-5) Fib(n-6)

4/9/13

3

A lot of repeated work!
Fib(n)

Fib(n-1) Fib(n-2)

Fib(n-2) Fib(n-3)

Fib(n-3) Fib(n-4) Fib(n-4) Fib(n-5)

Fib(n-3) Fib(n-4)

Fib(n-4) Fib(n-5) Fib(n-5) Fib(n-6)

Identifying a dynamic
programming problem
The solution can be defined with respect to
solutions to subproblems

The subproblems created are overlapping, that is
we see the same subproblems repeated

Overlapping sub-problems

…

divide and
conquer

dynamic
programming

Creating a dynamic
programming solution
Step 1: Identify a solution to the problem with respect to smaller
subproblems (pretend like you have a solver, but it only works on
smaller problems):

l  F(n) = F(n-1) + F(n-2)

Step 2: bottom up - start with solutions to the smallest problems
and build solutions to the larger problems use an array to

store solutions
to subproblems

4/9/13

4

Is it correct?

F(n) = F(n-1) + F(n-2)

Running time?

Θ(n)

Counting binary search trees
How many unique binary search trees can be
created using the numbers 1 through n?

4

2

 1 3 6

5

Step 1:
What is the subproblem?
Assume we have some black box solver (call it T) that
can give us the answer to smaller subproblems

How can we use the answer from this to answer our
question?

How many options for the root are there?

 1 2 3 n

…

4/9/13

5

Subproblems
 i

How many trees have i as the root?

Subproblems
 i

1, 2, …, i-1 i+1, i+2, …, n

?

Subproblems
 i

1, 2, …, i-1 i+1, i+2, …, n

T(i-1)

subproblem of
size i-1

?

Subproblems
 i

1, 2, …, i-1 i+1, i+2, …, n

T(i-1) Number of trees for i+1, i+2, …, i+n
is the same as the number of trees
from 1, 2, …, n-i

4/9/13

6

Subproblems
 i

1, 2, …, i-1 i+1, i+2, …, n

T(i-1) T(n-i)

Given solutions for T(i-1) and T(n-i) how
many trees are there with i as the root?

Subproblems
 i

1, 2, …, i-1 i+1, i+2, …, n

T(i-1) T(n-i)

T(i) = T(i-1) * T(n-i)

Step 1: define the answer with
respect to subproblems

T(i) = T(i-1) * T(n-i)

∑ =
−−=

n

i
inTiTnT

1
)(*)1()(

Is there a problem?

As with Fibonacci, we’re
repeating a lot of work

4/9/13

7

Step 2: Generate a solution
from the bottom-up

0 1 2 3 4 5 … n

0 1 2 3 4 5 … n
1 1

0 1 2 3 4 5 … n
1 1

c[0]*c[1] + c[1]*c[0]

4/9/13

8

0 1 2 3 4 5 … n
1 1

2

1

1

2

c[0]*c[1] + c[1]*c[0]

0 1 2 3 4 5 … n
1 1 2

0 1 2 3 4 5 … n
1 1 2

c[0]*c[2] + c[1]*c[1] + c[2]*c[0]

1 2 3

0 1 2 3 4 5 … n
1 1 2 5

4/9/13

9

0 1 2 3 4 5 … n
1 1 2 5 …

Running time?

Θ(n2)

Longest common
subsequence (LCS)

X = A B A C D A B A B

ABA?

For a sequence X = x1, x2, …, xn, a subsequence
is a subset of the sequence defined by a set of
increasing indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

Longest common
subsequence (LCS)
For a sequence X = x1, x2, …, xn, a subsequence
is a subset of the sequence defined by a set of
increasing indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

X = A B A C D A B A B

ABA

4/9/13

10

Longest common
subsequence (LCS)

X = A B A C D A B A B

ACA?

For a sequence X = x1, x2, …, xn, a subsequence
is a subset of the sequence defined by a set of
increasing indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

Longest common
subsequence (LCS)

X = A B A C D A B A B

ACA

For a sequence X = x1, x2, …, xn, a subsequence
is a subset of the sequence defined by a set of
increasing indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

Longest common
subsequence (LCS)

X = A B A C D A B A B

DCA?

For a sequence X = x1, x2, …, xn, a subsequence
is a subset of the sequence defined by a set of
increasing indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

Longest common
subsequence (LCS)

X = A B A C D A B A B

DCA

For a sequence X = x1, x2, …, xn, a subsequence
is a subset of the sequence defined by a set of
increasing indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

4/9/13

11

Longest common
subsequence (LCS)

X = A B A C D A B A B

AADAA?

For a sequence X = x1, x2, …, xn, a subsequence
is a subset of the sequence defined by a set of
increasing indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

Longest common
subsequence (LCS)

X = A B A C D A B A B

AADAA

For a sequence X = x1, x2, …, xn, a subsequence
is a subset of the sequence defined by a set of
increasing indices (i1, i2, …, ik) where
1 ≤ i1 < i2 < … < ik ≤ n

LCS problem
Given two sequences X and Y, a common subsequence
is a subsequence that occurs in both X and Y
Given two sequences X = x1, x2, …, xn and
Y = y1, y2, …, yn,

What is the longest common subsequence?

X = A B C B D A B

Y = B D C A B A

LCS problem
Given two sequences X and Y, a common subsequence
is a subsequence that occurs in both X and Y
Given two sequences X = x1, x2, …, xn and
Y = y1, y2, …, yn,

What is the longest common subsequence?

X = A B C B D A B

Y = B D C A B A

4/9/13

12

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

Assume you have a solver for smaller problems

Step 1: Define the problem
with respect to subproblems

X = A B C B D A ?

Y = B D C A B ?

Is the last character part of the LCS?

Step 1: Define the problem
with respect to subproblems

X = A B C B D A ?

Y = B D C A B ?

Two cases: either the characters
are the same or they’re different

Step 1: Define the problem
with respect to subproblems

X = A B C B D A A

Y = B D C A B A

If they’re the same

The characters are
part of the LCS

nmn xYXLCSYXLCS += −−),(),(1...11...1

LCS

What is the recursive
relationship?

4/9/13

13

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

If they’re different

LCS

),(),(1...1 YXLCSYXLCS n−=

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

If they’re different

LCS

),(),(1...1 −= mYXLCSYXLCS

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

If they’re different

X = A B C B D A B
Y = B D C A B A

?

Step 1: Define the problem
with respect to subproblems

X = A B C B D A B

Y = B D C A B A

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

(for now, let’s just worry about counting the length of the LCS)

4/9/13

14

Step 2: Build the solution from
the bottom up

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

What types of subproblem
solutions do we need to store?

LCS(X1…j, Y1…k)

two different indices

Step 2: Build the solution from
the bottom up

⎩
⎨
⎧ =+

=
−−

−−

otherwise),(),,(max(
 f),(1

),(
1...11...1

1...11...1

mn

mnmn

YXLCSYXLCS
yxiYXLCS

YXLCS

What types of subproblem
solutions do we need to store?

LCS(X1…j, Y1…k)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

For Fibonacci and tree counting,
we had to initialize some entries in
the array. Any here?

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0
0
0
0
0
0
0

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

Need to initialize values within 1
smaller in either dimension.

4/9/13

15

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 ?
0
0
0
0
0
0

LCS(A, B)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0
0
0
0
0
0
0

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 ?
0
0
0
0
0
0

LCS(A, BDCA)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1
0
0
0
0
0
0

LCS(A, BDCA)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

4/9/13

16

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 ?
0
0
0

LCS(ABCB, BDCAB)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3
0
0
0

LCS(ABCB, BDCAB)

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

⎩
⎨
⎧

−−

=−−+
=

otherwise]1,[],,1[max(
 f]1,1[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

Where’s the
final answer?

The algorithm

4/9/13

17

The algorithm

Base case initialization

The algorithm

Fill in the matrix

The algorithm The algorithm

4/9/13

18

The algorithm Running time?

Θ(nm)

Keeping track of the solution
Our LCS algorithm only calculated the length of the
LCS between X and Y
What if we wanted to know the actual sequence?

Keep track of this as well… 0 xi

1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

⎩
⎨
⎧

−−

=+
=

otherwise]1,[],,1[max(
 f],[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

We can follow the
arrows to generate
the solution

4/9/13

19

0 xi
1 A
2 B
3 C
4 B
5 D
6 A
7 B

0 1 2 3 4 5 6
yj B D C A B A i

j

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 2 3 4 4

⎩
⎨
⎧

−−

=+
=

otherwise]1,[],,1[max(
 f],[1

],[
jiLCSjiLCS

yxijiLCS
jiLCS ji

We can follow the
arrows to generate
the solution

BCBA

