
CS 051 Spring 2010

CS 051 Laboratory # 6
GUI Practice

Objective: To gain experience using GUI components and listeners.

—

The Scenario. In this lab, you will play with GUI components, layout management and listeners.
You will create a program which includes a JSlider, a couple of JLabels, a pop-up menu (JComboBox),
a JTextField, and a JButton. A picture of the screen can be seen below:

As usual, the center of the screen is the canvas. At the “South” end of the screen is a JPanel that
holds a JTextField where the user can write some text to be displayed on the canvas, a subpanel that
contains two components used to select a font and remove text from the screen. Below that subpanel
is a JSlider used to control the font size, and below that is a label showing the current font size.
The main panel should use a GridLayout with four rows and one column as its layout manager. The
subpanel uses a simple FlowLayout. The components included in the subpanel are a JButton that is
used to remove the last item written on the screen and a pop-up menu (JComboBox) that allows the
user to choose from among several fonts (we used “Courier”, “Sand”, “Zapfino”, and “Times”).

When the user clicks anywhere on the canvas, your program should display the text showing in
the JTextField in the selected font and font size at the place where the user clicked. When the user
adjusts the JSlider or selects a new font with the JComboBox menu, the last text placed on the canvas
should change its size or font accordingly. Changing the text in the JTextField has no impact on items
displayed on the canvas.

If the JButton is pressed, the last text placed on the canvas should be removed. (You may think of
this as a one-level undo. Pressing the button a second or third time will not remove additional items.)
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How to Proceed For this lab, you will create an Eclipse project from scratch. See the instructions at
http://www.cs.pomona.edu/classes/cs051/handouts/eclipse-install.html. Please name your
class TextPlay.

Before beginning be sure that you open up the GUI cheat sheet from the “Resources” section on
the class web site. As a quick reminder, remember the basic steps in displaying components:

1. Construct an instance of the component.

2. Initialize it if necessary (like adding items to a JComboBox).

3. Add the component to a JPanel or to the content pane of the window controller.

Finally, when you’ve added all your components, don’t forget to call validate on the content pane
obtained from calling getContentPane.

To react to events generated by the user interacting with a GUI component, remember these steps:

1. Declare that the window controller class implements the listener interface for that component,
such as ActionListener.

2. Implement the method that is called when the user interacts with the component, such as
actionPerformed.

3. Add the window controller as a listener to the component, calling a method like addActionListener.

Note that the statements import java.awt.*;, import java.awt.event.*;, import javax.swing.*;,
and import javax.swing.event.*; need to appear at the top of your class. These lines inform Java
that your program will need access to the standard Java libraries that support GUI components and
events (including event listeners).

When you run your program from Eclipse, set the width to 340 and the height to 420.
Here is a suggestion on how to decompose the development of this program into simpler steps.

1. Include code in your begin method to add a JPanel at the “South” end of the program window.
This JPanel should use a GridLayout having 4 rows and 1 column. Place a JTextField in the
panel. Make it so that if the user clicks anywhere in the canvas then whatever is showing in the
JTextField is displayed as a Text item on the canvas. Make sure that successive clicks on the
canvas insert new Text items on the screen (showing whatever is currently in the JTextField).

You will want a variable associated with the Text item most recently displayed so that you can
change its font or font size later. You will associate this name with the current text item in your
onMouseClick method.

Since your program does not react to the user typing in the JTextField, it is not necessary to
associate a listener with this component.

2. Now that you can display text items, start working on adding the components that will let you
modify them.

Start with the JButton.

Add a JButton to the panel so that it contains the words “Remove last text”. In order to
allow your WindowController extension to respond when the button is pressed, add the phrase
“implements ActionListener” to the header of the class. Call the button’s addActionListener
method in your begin method to inform the button that your WindowController wants to be
notified when the button is pressed and add an actionPerformed method to your class that
performs the appropriate action (removing the text from the canvas) when the button is pressed.

2



CS 051 Spring 2010

Make sure your program behaves reasonably if the user clicks the button before actually putting
any text on the canvas.

3. At this point, there are only two GUI components in the panel you have placed in the south quad-
rant of your display: the JTextField and the JButton. Since this panel uses a 4x1 GridLayout,
there is no room left in the second row to add extra components. To make it possible to add
extra components in that row of this GridLayout JPanel, you should create a new subpanel to
hold the JButton you already created and the JComboBox component you will create in the next
step. Then, add the existing JButton to the subpanel rather than to the original panel. After
this is done, test the program again. It should work the same except the JButton will no longer
be stretched to fill the entire width of the window.

4. The next step is to create the JComboBox menu that will allow you to choose the font in which
the Text item is displayed.

See the GUI cheat sheet for the constructor and the method used to add choices to the JComboBox
menu. Then add the JComboBox menu to the main panel and tell it that your program will be
the listener. The JComboBox requires an ActionListener just like JButton does, so you do not
need to add an “implements” clause. You do need to modify your actionPerformed method to
react to menu selections made by the user. Use the getSource() method on the event parameter
to find out which GUI component the user interacted with. getSource() will return either the
JButton object or the JComboBox object. Depending on which value getSource() returns, you
should either remove the last text from the canvas or change its font.

To change the font, you can call the method

setFont(String fontName)

of the Text class to change the font used by an existing Text object.

5. The last control we want you to add is the JSlider to control the font size. As shown on the
first page of the handout, we also want you to place a JLabel component under the JSlider to
display the current font size.

Start by adding a JSlider to your main panel just as you added the JTextField and subpanel.
Place it after the subpanel. Look at the GUI cheat sheet to determine what type of listener a
JSlider needs. (When you have a class that implements several interfaces, you simply separate
the interfaces with commas. Do NOT include the keyword implements more than once in the
class header!) Define the appropriate listener method so that when the bubble in the scrollbar is
moved, the size of the text changes. The possible font sizes should range from 10 to 48.

6. The JLabel beneath the JSlider should always display the current value represented by the
JSlider. As shown on the first page of the handout, we want you to display this value preceded
by the string “Current Font Size: ”. This can be done as usual using the concatenation operator
(+) in constructing the string to be inserted as the parameter of the setText method of the
JLabel.

7. Finally, make sure that when the user clicks on the canvas the new Text item drawn has all the
characteristics selected for font and font size. Avoid duplicating the code used to set the font and
font size by creating a private method that you can call from several places.

Be careful that your program does not crash if you manipulate the controls after removing the last
text item from the canvas or before adding the first text item to the canvas.
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Extra Credit If you are interested in earning up to 1 point of extra credit: add the capability of
changing the color of your text. There are two ways of doing this, one fairly simple worth half a point,
while the other is more complicated and worth the full point:

1. Add a JComboBox menu with the names of colors (e.g., black, red, blue, green, yellow). Make
“this” a listener for that choice item. Update your actionPerformed method to change the color
of the text when the user uses the color menu. This is worth .5 points.

2. A more flexible way to control the text color would be to use a set of three sliders. You could do
this by adding three more JSliders to your display. This is worth 1 point.

Submitting Your Work Before submitting your work, make sure that each of the .java files includes
a comment containing your name. Also, before turning in your work, be sure to double check both its
logical organization and your style of presentation. Make your code as clear as possible and include
appropriate comments describing major sections of code and declarations. Use the Format command
in the Source menu to make sure your indentation is consistent. Refer to the lab style sheet for more
information about style.

Turn in your project the same as in past weeks; though make sure that the folder name begins with
your last name (and includes the lab number).

This lab is due Monday at 11 p.m., though I wouldn’t be surprised if most of you completed it
during the lab period.

Table 1: Grading Guidelines

Value Feature
Style (5 pts total)

1 pts. Descriptive comments
1 pts. Good names and formatting
1 pts. Good use of constants
1 pts. Good use of private and local variables
1 pts. Good use of private methods

Correctness (5 pts total)
1 pt. Displaying appropriate text at click point
1 pt. Changing the font
1 pt. Removing the last text
1 pt. Changing the font size (and showing its size in the label)
1 pt. Avoiding null pointer errors
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