
CS 051 Spring 2010

CS 051 Laboratory # 4
Boxball

Objective: To gain experience defining constructor and method parameters and using active objects.

—

The Scenario.

For this lab, you will implement a game called Boxball. This is a (simple) game in which the player
attempts to drop a ball into a box. Boxball has 3 levels of difficulty. With each increasing level, the
box gets smaller, and the player is required to drop the ball from a greater height.

When the game begins, the playing area is displayed along with three buttons that allow the player
to select a level of difficulty. Selecting a level of difficulty affects the size of the box and the position of
the line indicating the minimum height from which the ball must be dropped. The player drops a ball
by clicking the mouse in the region of the playing area above the minimum height line. If the ball falls
completely within the box, the box is moved to a random location. Otherwise, it remains where it is.
In either case, the player may go again, dropping another ball.

The boxball playing area should appear as follows:

The online version of this handout has a demo version of BoxBall. See the online version of this
handout for instructions on obtaining a copy of the starter folder and for links to see the starter code.

Design of the program.

For this lab you will need to define three classes: a Box class, a Ball class, and a Boxball class that
extends WindowController. These will allow you to create the major components of the game, i.e., the
box, the balls, and the playing area, respectively. You are expected to come to lab with a design for

1

CS 051 Spring 2010

each class that corresponds to the functionality specified in parts 1, 2, and 3 described below. 15% of
your lab grade will depend on the design you bring to class. Even if you further refine your design in
lab, you will be graded on the design you bring to lab.

To give you a better sense of what is expected for a design, we provide you with the design for
MagnetGame and Magnet classes from last week’s lab at the end of this handout.

The Boxball class should be responsible for drawing the playing area when the program starts. It
should also handle the player’s mouse clicks. If the player clicks on an easy, medium, or hard button,
the starting line should move to the appropriate height. If the player clicks within the playing area
above the starting line, a new ball should be created and dropped from that height.

The Box class will allow you to create and manipulate the box at the bottom of the playing area. A
box is responsible for knowing how to move to a new random location when the ball lands in the box.
It also is responsible for changing size if the player changes the difficulty level.

The Ball class should allow you to create a ball that falls at a constant rate. When the ball reaches
the bottom of the playing area, the player should be told whether the ball landed in the box. The ball
should then disappear. If the ball lands in the box, the box should move to a new location.

Part 1: Setting up Start by setting the layout of your playing area, using the familiar objectdraw
shapes. Our playing area has both width and height of 400. The code for building the playing area
should go in Boxball.java. (The window itself should be set to be 600 by 600 when creating a new
run configuration in Eclipse.)

Once you have set up the playing area, add the Easy, Medium, and Hard buttons to your layout. The
buttons are just rectangles that will respond to mouse clicks. After you’ve displayed the three buttons,
add code to the onMouseClick method that will adjust the level of the starting line, depending on the
button clicked. If the player selects the “Easy” buttton, the line should be relatively low. If the player
selects the “Hard” button, the line should be quite high.

Part 2: Adding the box Next, you should add a box to your layout. To do this, you will need to
write the Box class that will allow you to create and display the box object at the bottom of the playing
area.

A box is really just a rectangle, but there is some important information you will need to pass to the
Box constructor in order to construct it properly. First, you need to tell the box where it should appear
on the display. Remember that its horizontal position will change over time, but its vertical position
will always be the same. What are the extreme left and right values for its horizontal position?

The box also needs to know how wide it should be. Of course, even in its hard setting, the box
should still be a little wider than the ball. Since the Boxball class will create both the ball and the
box, it knows their relative sizes. It must therefore tell the box how big it should be when the box is
created.

Finally, in order for the rectangle to be drawn, you will also need to tell the box what canvas it
should be drawn on. This information will be passed on to the constructor for the rectangle.

Once you have written the constructor for the Box class, you should go back to the begin method
of the Boxball controller class and create a new Box.

The default setting for the game is “Easy”. If the player clicks on the “Medium” or “Hard” button,
the box should get smaller (or much smaller). The box needs a method, setSize, to allow its size to
change when the player clicks on Easy, Medium, or Hard. Think carefully about what parameters you
need to pass to setSize to accomplish this command.

After writing the setSize method, test it by modifying the onMouseClick method in the Boxball
controller. Clicking on one of the level selection buttons should now not only raise or lower the bar,
but it should also adjust the size of the box.

2

CS 051 Spring 2010

Part 3: Dropping a ball The Ball class is different from other classes with which we have been
working. Objects of this class will be active.

The player will create a ball by clicking with the mouse in the playing area above the starting line.
When the click is detected, a new Ball should be constructed. The constructor for the Ball class
should draw a ball at the appropriate location on the screen. It should also start it moving down the
screen. To do so, it will call a start method, which will cause the code in run to execute.

You will notice that the skeleton of the Ball constructor we have provided for you contains the call
to start. You will need to add more statements to the constructor, but you should be sure that the
start method call is the last statement in your constructor.

You need to think carefully about what information a ball needs to know to construct itself properly.
Recall that Boxball knows how big the ball should be (so that the ball and the box can be sized
appropriately). Boxball also knows where the mouse was clicked. This should be the starting location
for the ball. You need to pass this information to the Ball constructor so that it can draw itself and
fall.

To get the ball to fall, you will need to do some work. This will be done in the run method. We
have provided a skeletal run method for you.

We will use a bit of video game magic to make the ball appear to fall. The ball will appear to
move smoothly down the screen, but in fact, it will be implemented by a series of movements. Each
movement should move the ball a short distance, wait a short time, and then move again. The run
method contains a while loop to allow this. On each iteration of the while loop, the ball should move a
small distance, say 10 units. Then it should wait a short time. The pause method call that we provided
in the starter tells the ball to wait 50 milliseconds. There are 1000 milliseconds in a second. Moving
short distances that rapidly will appear to be continuous movement to the human eye. This is the
same technique that television and movies use to provide continuous motion. To complete the while
statement, you need to provide the condition that determines when to exit the while loop. Specifically,
the ball should stop moving when it reaches the bottom of the playing area.

Once you have written the Ball constructor and the run method, you should test them. Return to
your Boxball controller class, and add code to the onMouseClick method that will construct a ball if
the player clicks above the starting line in the playing area. At this point, do not worry about whether
the ball falls in the box. Just check that it is drawn at the right starting location and that it makes its
way to the bottom of the playing area.

Part 4: Checking the box Now you are ready to determine whether the ball fell in the box. As
the ball reaches the bottom of the playing area, it should compare its location to the box’s location.
Of course, the ball will need to find out the box’s location. The Box class needs to provide methods
getLeft and getRight that give the positions of the edges of the box. To call those methods, the Ball
class must know about the box. Go back and modify your Ball constructor to pass in the Box as an
additional parameter.

If the ball lands in the box, you should display the message “You got it in!”. If the ball misses, you
should display “Try again!”. Since the Boxball controller is responsible for the layout of the game, it
should construct a Text object that displays a greeting message. The Text object should be passed to
the Ball constructor as a parameter so that the ball can change the message appropriately when it hits
or misses the box.

Test the additions that take care of checking whether the ball fell in the box.
Finally, use the random number generator (i.e., RandomIntGenerator) to pick a new location for

the box when the player gets the ball in the box. The box should be responsible for picking the new
location and moving itself. Therefore, you will need to add a method to the Box class called moveBox.

3

CS 051 Spring 2010

Note that when the box is narrow its left can edge can have a relatively large value while still having
the whole box in the playing area. However, when the box is wide, it cannot move quite as far without
having its right edge going outside the playing area. You may set up the random number generator to
only give values that will result in the widest box staying inside the playing area. For extra credit you
can make it so that even narrower boxes can end up all the way to the right.

Note, however, that if you’re going to attempt the extra credit, you should make a copy of your
entire project so that you have one version that satisfies the basic requirements (this is to make sure
that you can turn in something that works, even if you can’t get the extra credit to work).

Due Dates

As usual, this assignment will be due at 11 pm Monday evening.

Submitting Your Work

Before submitting your work, make sure that each of the .java files includes a comment containing your
name. Also, before turning in your work, be sure to double check both its logical organization and your
style of presentation. Make your code as clear as possible and include appropriate comments describing
major sections of code and declarations. Refer to the lab style sheet on the course web page for more
information about style. You can use the Format command in the Source menu to make sure your
indentation is consistent.

Turn in your project the same as in past weeks. Use the Export command from the File menu.
Check that the Boxball project is being exported to a new folder whose name includes your name and
identifies the lab. Then quit Eclipse and drag your folder to the dropbox folder.

4

CS 051 Spring 2010

Table 1: Grading Guidelines

Value Feature
Design preparation (3 pts total)

1 pt. Boxball class
1 pt. Box class
1 pt. Ball class

Style (7 pts total)
2 pts. Descriptive comments
2 pts. Good names
2 pts. Good use of constants
1 pt. Appropriate formatting

Program Quality (5 pts total)
1 pt. Good use of boolean expressions
1 pt. Not doing more work than necessary
1 pt. Using most appropriate methods
1 pt. Good use of if and while statements
1 pt. Good choice of parameters

Correctness (5 pts total)
1 pt. Drawing the game correctly at startup
1 pt. Changing box size and line height correctly
1 pt. Dropping the ball
1 pt. Determining if the ball landed in the box
1 pt. Moving the box after the ball lands in it

Extra credit (2 pts total)
1/2 pt. All size boxes can end up all the way to right of window
1/2 pt. More interesting graphics than balls and boxes
1/2 pt. Highlight the level that player is currently on and

display the number of balls landing in and not in the box
1/2 pt. Ball accelerates as it falls

5

CS 051 Spring 2010

MagnetGame Design

/*
* Name: Joe Cool
* Lab: Lab 3 (magnets)
* Purpose: MagnetGame draws two magnets on the screen. It handles
* mouse input to allow the user to drag and flip the
* magnets.
*/
public class MagnetGame extends WindowController{

/* The two magnets */
private Magnet magnet1, magnet2;

/* These variables are used to remember which magnet the user
is actively moving and which is reacting to the magnetic field
of the moving magnet. */

private Magnet restingMagnet, movingMagnet;

/* Remember where the mouse was on the last press or drag so
we know how far to move the magnet. */

private Location lastPoint;

/* Remember if we are dragging a magnet. */
private boolean dragging = false;

// Draws the magnets on the screen
public void begin() {

// Draw the two magnets
}

// Remembers the mouse position and if the user is pointing at
// one of the magnets.
// Parameters: point - where the user pressed the mouse button
public void onMousePress(Location point) {

// Remember where the mouse was pressed in lastpoint.
// If the first magnet was pressed on,
// remember that magnet as the movingMagnet and the other
// magnet as the restingMagnet. Set dragging to true.
// else if the second magnet was pressed on
// set it as the movingMagnet and the other as the restingMagnet.
// set dragging to true.
// otherwise (we are in neither magnet),
// set dragging to false.

}

// If a magnet was selected, drag that magnet.
// Parameters: point - the current mouse location

6

CS 051 Spring 2010

public void onMouseDrag(Location point) {
// If dragging is true,
// determine how far the mouse moved
// and move the movingMagnet by that amount. Then check
// to see if that movement causes an interaction with the
// resting magnet.

}

// If a magnet is clicked on, flip that magnet.
// Parameters: point - where the user clicked the mouse
public void onMouseClick(Location point) {

// If the first magnet was clicked on,
// flip that magnet and the see if the flip causes an
// interaction with the other magnet.
// else if the second magnet was clicked on
// flip that magnet and the see if the flip causes an
// interaction with the other magnet.

}
}

Magnet Design

/*
* Name: Joe Cool
* Lab: Lab 2 (magnets)
* Purpose: Magnet models a physical magnet with a north and south
* pole. A magnet can move and it can interact with other
* magnets through attraction and repulsion.
*/
public class Magnet {

/* The dimensions of the magnet. */
private final static double MAGNET_WIDTH = 150;
private final static double MAGNET_HEIGHT = 50;

/* Distance from pole to magnet perimeter */
private static final double POLE_DISTANCE = MAGNET_HEIGHT / 2;

/* The rectangle representing the outline of the magnet */
private FramedRect box;

/* The poles of the magnet */
private Pole northPole, southPole;

// Creates a new magnet
// Parameters:
// point - the upper left corner of the magnet
// canvas - the canvas that the magnet will be displayed on

7

CS 051 Spring 2010

public Magnet (Location point, DrawingCanvas canvas) {
// Draw the rectangle
// Create the north and south poles offset by POLE_DISTANCE
// within the rectangle

}

// Return the upper left corner of the magnet.
public Location getLocation() {

// return the location of the box;
}

// Move the magnet relative to its current position.
// Parameters:
// xoff - the x offset in the movement
// yoff - the y offset in the movement
public void move(double xoff, double yoff) {

// Move the rectangle and the two poles by the same offset.
}

// Move the magnet so that its upper left corner is at the given
// point.
// Parameters:
// point - the new upper left corner for the magnet
public void moveTo(Location point) {

// Calculate an offset from the point to the current box
// location. Call the move method using the calculated
// offset.

}

// Returns true if point is within the bounds of the magnet.
// Parameters:
// point - the point to check for containment
public boolean contains (Location point) {

// Return whether the box contains point.
}

// Swaps the north and south poles of the magnet.
public void flip () {

// Remember the x coordinate where the north and south poles
// currently are in local variables. Compute the distance
// between those x coordinates. Move the poles that distance
// in the x coordinate and 0 in the y distance.

}

// Return the north pole of the magnet
public Pole getNorth () {

return northPole;
}

8

CS 051 Spring 2010

// Return the south pole of the magnet
public Pole getSouth() {

return southPole;
}

// Cause another magnet to move if it is close enough to cause
// a magnet reaction.
// Parameter: other - the magnet to check for a reaction
public void interact (Magnet other) {

// Check for attraction between the opposite poles of this
// magnet and the other magnet.
// Check for repulsion between similar poles of this
// magnet and the other magnet.

}
}

Boxball.java

import objectdraw.*;
import java.awt.*;

// Name:
// Lab:

public class Boxball extends WindowController
{

public void begin()
{
}

public void onMouseClick(Location point)
{
}

}

Box.java

import objectdraw.*;
import java.awt.*;

// Name:
// Lab:

public class Box

9

CS 051 Spring 2010

{

// You need to add the parameters.
public Box()
{
}

// Move the box to a random location at the bottom of the playing area.
// Add parameters if necessary.
public void moveBox()
{
}

// Set the width of the box.
// Add parameters if necessary.
public void setSize()
{
}

// Return the x position of the left edge of the box
// Replace the return statement with the correct code.
// Add parameters if necessary.
public double getLeft()
{

return 0.0;
}

// Return the x position of the right edge of the box
// Replace the return statement with the correct code.
// Add parameters if necessary.
public double getRight()
{

return 0.9;
}

}

Ball.java

import objectdraw.*;
import java.awt.*;

// Name:
// Lab:

public class Ball extends ActiveObject
{

10

CS 051 Spring 2010

// Add the parameters that you need.
public Ball()
{

// Add your code here. Make sure that the start method call is the last thing
// in the constructor.

start();
}

public void run()
{

// Change the true condition to the condition that tests for the ball reaching
// the bottom of the playing area.
while (true)
{

// Add code to move the ball a small distance down here.
pause(50);

}

// Add the code that should be executed when you reach the bottom of the
// playing area.

}
}

11

