BACKPROPAGATION

David Kauchak
CS158 —Fall 2019

10/31/19

Admin
| |
Grading!

Assignment 7

Assignment 8

Neural network
[

inputs

Individual
perceptrons/neurons

€<

Neural network
[|

some inputs are
inputs provided/entered

10/31/19

Neural network Neural network

inputs inputs

each perceptron computes and

calculates an answer

those answers become inputs
for the next level

Neural network A neuron/perceptron

Input x1

Weight w1

inputs

Weight w2
Input x2 ﬁ
ﬁ Output y

Input xa /

Weight w3
finally get the answer after all .
mn= WX,
i

activation function

levels compute

Weight w4

Input x4

10/31/19

Activation functions

hard threshold:

glin) = 1 ifin>-b
0 otherwise

sigmoid

1
g(x)=—— . L
l+e EEE

tanh x

Training

Input x1
Input x2 q@
X1 ‘ X2 ‘ X1 XOr Xz
=2
’ oo 0
0 1 1
How do we learn the weights? 1 0 1
1 1 0

Learning in multilayer networks

Challenge: for multilayer networks, we don’t know what the
expected output/error is for the internal nodes!

how do we learn these weights?

w

expected output?

percepiron neural network
linear model

Backpropagation: intuition

Gradient descent method for learning weights by
optimizing a loss function

calculate output of all nodes

calculate the weights for the output layer based on
the error

“backpropagate” errors through hidden layers

10/31/19

Backpropagation: intuition

! ! We can calculate the actual error here

Backpropagation: intuition

Key idea: propagate the
error back to this layer

Backpropagation: intuition

error

error for node is ~ w; * error

Backpropagation: intuition

$¥g—
o

w5

~w; * error

Calculate as normal, but weight the error

10/31/19

m: features/inputs
h
vi

d: hidden nodes

va hi: output from

Xm hidden nodes
hd

d weights: denote v,

N\

Xm

How many weights?

h
vi

vd

ha

Backpropagation: the details Backpropagation: the details
|] |
Gradient descent method for learning weights by .
optimizing a loss function Notation:
m: features/inputs
h1
1. calculate output of all nodes X] \ » d: hidden nodes
> caleulate the updates directly for the output layer hi: output from
P 7 P Y Xm \h/ hidden nodes
3. “backpropagate” errors through hidden layers How many weights (ignore bias for now)2
1 a2
loss= Y —(y- d
0ss Zz(y y)- squared error
Backpropagation: the details Backpropagation: the details
|] |
Notation: Notation:

m: features/inputs
d: hidden nodes

hy: output from
hidden nodes

10/31/19

1. Calculate outputs of all nodes

vi

vd
Xm

What are hy in terms of x and w?

Backpropagation: the details Backpropagation: the details
|] |
. Gradient descent method for learning weights by
Notation: optimizing a loss function
. m: features/inputs {
X1 w21 hi afgminw,‘,- Ef(y - 5’)2
vi 0 2
Wi ot d: hidden nodes x
o v hi: output from 1. caleulate output of all nodes
Xm . hidden nodes
d * m: denote wy = wyq: weight from input 3 to hidden 2. caleulate the updates directly for the output layer
node 2
first index = hidden node = w,: all the m weights associated with
second index = feature hidden node 4 3. “backpropagate” errors through hidden layers
Backpropagation: the details Backpropagation: the details
|]

1. Calculate outputs of all nodes

h
vi

out

vd

h, = f(w,-x)

f is the activation function

m
Wdm
Xm Wi x = E WiyX;
hd =

10/31/19

Backpropagation: the details
fr

1. Calculate outputs of all nodes

Vi
w3t

= FOv) =

—Wp X

f is the activation function

Backpropagation: the details
[

1. Calculate outputs of all nodes
w11

out

vd

ha

What is out in terms of h and v2

Backpropagation: the details
=

1. Calculate outputs of all nodes

X1 waT h
W3T V!
out
vd
‘Wdm,
Xm
hd
h 1
out=f(v-h)= Lo

Backpropagation: the details

2. Calculate new weights for output layer

h vi
ha

. 1 ~
argmin,, S L0-57

Want to take a small step towards decreasing loss

10/31/19

What are each of these?

Do they make sense individually?

Output layer weights Output layer weights
[[
" . l _52 h Vi _ _ 3 i o R h V1
argmmw,v}; S0=9 =O=) 2= fv)
- =)L pemy >

dloss d (1 a2 ha A dv, v h

=—|50-9 - ‘
dv, dv \2 d

=== f S @R vh
d (1 s . '
=7 (z0 sy yese (= fO)L vh=yvihy
d k
== fOh)——(y-f(vh) The actual update is a step towards decreasing loss:
dv,
V=V +(y=fv-)f'(v-h)h,
Output layer weights Output layer weights
[[
Vv, =V, +(y-fv-h)f'(v-h)h, hn v ' Vv, =V, +(y-f(v-h)f'(v-h)h, o v
ou out
hd hd

how far from correct
and which direction

slope of the activation

function where input is at this weight

size and direction of the
feature associated with

10/31/19

Output layer weights

Output layer weights

slope of the activation
function where input is at

" smaller step

bigger step

smaller step” |

|] |
v, =V, +(y-f(v-h)f'(v-h)h, e VI ' v, =V, +(y-f(v-h)f'(v-h)h, e VI
ouf out
ha ha
how far from correct how far from correct
and which direction and which direction
(y-f(v-h)>0 (y=f(v-h))>0 prediction < label: increase the weight
(y - f(v . h)) <0 (y — f(V . h)) <0 prediction > label: decrease the weight
bigger difference = bigger change
Output layer weights Output layer weights
|] |
Vv, =V, +(y-fv-h)f'(v-h)h, hn v ' Vv, =V, +(y-f(v-h)f'(v-h)h, o v
ouf out
hd hd

size and direction of the
feature associated with
perceptron update: this Welghf
Wy =W
gradient descent update:

W, =W, X, y,C

10/31/19

Backpropagation: the details Backpropagation

|] |
Grc’Jd!e.nT descent meﬂ.wd for learning weights by 3. “backpropagate” errors through hidden layers
optimizing a loss function

I
argmin, , 3~ (v-3) N h
x Vi

out

1. calculate output of all nodes v

ha

2. calculate the updates directly for the output layer 1
argmin, . ¥ —(y=3

k| i .
5. "backpropagate” errors through hidden layers Want to take a small step towards decreasing loss

Hidden layer weights Hidden layer weights
= [
X ::; b X ::; b
dloss _ d (1 ., - V! - Vi
=== fO) (v h)——v-h

ki

d (1
= (zO-r@my) =g

J - _(y — f(V . h))/'(v . h) d‘i thk ::fr;\;?etic“leb;fwokfher vh components are not

=0-frh)- (y-fv-h) i

ki

J (= FO N by~
== SO)= [) dwy

ki
. d .

= _(y_f(vh))fv(vh) d v-h = _(y_f(Vh))f (v h)Vkajf(Wk Xx)

dw,

ki

10

10/31/19

== S W)y, =)
ki

==(y=f-m) ' f'(w, - 0)x;

Hidden layer weights

Vi

==(y=fv-m)f'v-h)yv f'(w, ‘X)ka X
dw,

W, -x=2wk,.x]
i

Why all the math?
=

“More math! High level stuff is interesting, but having a strong grasp of the
underlying math lets you reason out what's going on.”

“It feels like it is really shying away from the mathematical background at times in
the interest of not overwhelming us, but it would be best (in my opinion) if we got
the math we need to fully justify the approach.”

dloss=i(l(y_&)g)
dv, dv \2

d (1 2
=E(E(y—f(vh))
:(y—f(v-h))divk(y—f(v-h))

. d .
=~ o)L foemy
dv,

== f) F)y
dv,

What happened here?

==(=fO-h)f' -k

dloss _ d (l()’_y)g)

dw, dwy

2

d (1 . B
i (E(y—/w-h)'))

d
aw, (y=f(v-hy)

d
=-(y-fv h))dw‘]

==(y=f-m)f'(v-h)

=(y=f(v-h)

Sf-h)

d v-h
dw,

i

YR
dwy
d
=== f @) f v hyv,—— Iy,
dwk/
i X d
==(y=fO-I)f' Ry, — f(w, - x)
dwy
==(r= fO) @Ry f (O, "‘>Td weex

== (y= f M) f (v By f(w, - x)x,

==(y=f-m)f'(v-h)

d
h,
dw, ik

==(y=fO-h)f'(v-hyv

==(y=fOm)f'(v-h)

ki

4,
dwy

— (= RN P v, ~ f)
dwy

k

== SO I B v,)~
dwy,

=== OISO f 'O x)x;

What is the slope vh with respect to w;

11

10/31/19

Backpropagation
=

output layer

=== RS vy

What's different?

hidden layer
==(y=fO-) ' hw, f'(w, - x)x;

Backpropagation
=
output layer

=L O W)

error output input
activation
slope

wi
X1 _Wﬂé
: :dm
Xm é

hidden layer

== f) f VR, f(w, ‘x

error

weight from hidden layer slope of
to output layer WX

Backpropagation
=

output layer

=S) (o

error output
activation

input

slope

wil
x1—w9|9
}
Xmé

hidden layer

SGEFGRY Gy, f v, x5

error

how much of the how much do we
error came from this need to change

hidden node

output layer
Ve =V + (= f-m)f'(v- Iy

=V +h(y=fO-m)f'(v-h)

2

V=V, +hA

A= y-fv-h)

derivative of error
input at node

Backpropgation generalization

modified error

12

10/31/19

output layer
Vi =V +(y=FO-m)f'(v- Ik

=V +h (y=f-h)f'(v-h)

V=V +hA

out

A, =@ h)(y-f-h)

Backpropgation generalization

hidden layer

Wy =Wy + (= f-m) ' hv f'(w, - x)x,

=Wy + X, (W X f'v-h)(y = f(v-h)

Wy =Wy + XA,
Ay ='W f'-h)(y=f(v-h)

Can we write this more succinctly?

output layer
Ve =V + (= f-) - bk

=V +h(y=f-m)f'(v-h)

v, =V, +hA

out

A= (y=f-h)

Backpropgation generalization

hidden layer

Wy =Wy + (= f-m) 'Ry, f'(w, - X)x;

=W+ X, (W v f' v)y = f(v-h)

Wy =Wy + XA

A= F'wex f'v-m)(y=f(v-h))
=f'wexmA,,

output layer
v, =V +hA

out

A= h)(y-f-h)

w=w+input* A

current

Backpropgation generalization

hidden layer

Wy =W, + XA

Ay ='W v ') (y=f(v-h)

=f'we v,

weight to output layer ~ modified error of
output layer

current

= f'(current _input)w,

output A output

w=w+input* A

Backprop on multilayer networks

Anything different here?

w=w+input*A,, .

output

13

10/31/19

Backprop on multilayer networks

w=w+input*A_,,,.

Aciprens = S '(ctrrent _inpun)w,,,,, A

w=w+input * A

output

What “errors” at the next layer does the
highlighted edge affect?

Backprop on multilayer networks

w=w+input* A, ..

Aepren = [(current _input)w,,,, Ay,

w=w+input* A

output

Backprop on multilayer networks

w=w+input*A_

w=w+input* A

output

What “errors” at the next layer does the
highlighted edge affect?

Backprop on multilayer networks

w=w+input*A_, ..
A = f'(current _input)w,,,

w=w+input* A

output

14

10/31/19

Backprop on multilayer networks

w=w+input*A_, ..
e i)
Ay = Cctrrent _input) Y, s

w=w+input*A
A

current

= f(current _input)Wo,,, A .1

current

w=w+input*A

output

Backprop on multilayer networks

w=w+input*A,,..,

Ay = F current input) Sw ., Ay

Backpropogation:

- Calculate new weights and modified errors at output layer

- Recursively calculate new weighrs and modified errors on
hidden layers based on recursive relationship

- Update model with new weights

Multiple output nodes

w=w+input*A,,,.,
Acren = f'(CUrrent _input) 31,8

w=w+input * A

A

current

= f (current _input)w,;,, A .,

current

w=w+input* AWM

How does multiple outputs change things?

Multiple output nodes

w=w+input*A,,,.,,
B = f'(CUrrent _inpur) 30,8 0

W= WU A
Ao = I 'Ccrrent__input) S W s

= i *
w=w+input A()L!Ipm

How does multiple outputs change things?

15

10/31/19

Backpropagation implementation
fr

Output layer update:
V=Vt (y=f-h)f'(v-h)

Hidden layer update:
Wy =Wy + X, f (W), f'v-h)(y = f(v-h))

Any missing information for implementation?

Backpropagation implementation
[
Output layer update:

v, =v, +h (y-f@:-h)F'(v:h)

Hidden layer update:
wy; =Wy + X, (w0 fv-h)y - f(v-h))

1. What activation function are we using

2. What is the derivative of that activation function

Activation function derivatives

|
sigmoid
1
s(x)= l+e™
s'(x) = s(x)(1 = s(x))
tanh

it::mh(x) =1-tanh’x
dx

Learning rate
[

Output layer update:
Vi = v+ (y = fO-) f'(v- h)

Hidden layer update:
Wy =Wy + X, f ' (w - X)W f'v-h)(y = f(v-h))
¢ Like gradient descent for linear classifiers, use a learning rate

¢ Often will start larger and then get smaller

16

10/31/19

h
vi

\Zt

am
Xm v 7'
2 ‘o

W(m+1)

1. Add an extra feature hard-wired to 1 to all the
examples

2. For other layers, add an extra parameter whose input is
always 1

Backpropagation implementation Handling bias
[|
Just like gradient descent!
. . o b
for some number of iterations: M — v
W31
randomly shuffle training data out
for each example: va
Compute all outputs going forward Xm =
Calculate new weights and modified errors at output ha
layer
Recursively calculate new weights and modified errors on
hidden layers based on recursive relationship
How should we learn the bias?
Update model with new weights
Handling bias Online vs. batch learning
[|

for some number of iterations:
randomly shuffle training data
for each example:
Compute all outputs going forward
Calculate new weights and modified errors at output layer

Recursively calculate new weights and modified errors on hidden layers
based on recursive relationship

Update model with new weights

Online learning: update weights after each example

Batch learning?

17

10/31/19

Batch learning

for some number of iterations:
randomly shuffle training data
initialize weight accumulators to O (one for each weight)
for each example:
Compute all outputs going forward
Calculate new weights and modified errors at output layer

Recursively calculate new weights and modified errors on hidden layers
based_ on recursive relationshin

Add new weights to weight accumulators
Divide weight accumulators by number of examples

Update model weights by weight accumulators

Process all of the examples before updating the weights

Many variations

Momentum: include a factor in the weight update to keep moving in the
direction of the previous update

Mini-batch:
Compromise between online and batch

Avoids noisiness of updates from online while making more educated
weight updates

Simulated annealing:
With some probability make a random weight update
Reduce this probability over time

Challenges of neural networks?
Picking network configuration

Can be slow to train for large networks and large
amounts of data

Loss functions (including squared error) are generally
not convex with respect to the parameter space

History of Neural Networks

McCulloch and Pitts (1943) — introduced model of
artificial neurons and suggested they could learn

Hebb (1949) — Simple updating rule for learning
Rosenblatt (1962) - the perceptron model
Minsky and Papert (1969) — wrote Perceptrons

Bryson and Ho (1969, but largely ignored until 1980s--
Rosenblatt) — invented backpropagation learning for
multilayer networks

18

10/31/19

http://www.nytimes.com/2012/06/26 /technol
ogy/in-a-big-network-of-computers-evidence-
of-machine-learning.html2_r=0

19

