
9/13/16	

1	

FEATURE PRE-PROCESSING

David Kauchak
CS 158 – Fall 2016

Admin

Assignment 2
!  This class will make you a better programmer!
!  How did it go?
!  How much time did you spend?

Assignment 3 out
!  Implement perceptron variants
!  See how they differ in performance

Features

Where do they come from?

Terrain Unicycle-
type

Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

UCI Machine Learning Repository

http://archive.ics.uci.edu/ml/datasets.html

9/13/16	

2	

Provided features

Predicting the age of abalone from physical measurements

Name / Data Type / Measurement Unit / Description

Sex / nominal / -- / M, F, and I (infant)
Length / continuous / mm / Longest shell measurement
Diameter / continuous / mm / perpendicular to length
Height / continuous / mm / with meat in shell
Whole weight / continuous / grams / whole abalone
Shucked weight / continuous / grams / weight of meat
Viscera weight / continuous / grams / gut weight (after bleeding)
Shell weight / continuous / grams / after being dried
Rings / integer / -- / +1.5 gives the age in years

Provided features

1. Class: no-recurrence-events, recurrence-events
2. age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.
3. menopause: lt40, ge40, premeno.
4. tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54,
55-59.
5. inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32,
33-35, 36-39.
6. node-caps: yes, no.
7. deg-malig: 1, 2, 3.
8. breast: left, right.
9. breast-quad: left-up, left-low, right-up, right-low, central.
10. irradiated: yes, no.

Predicting breast cancer recurrence

Provided features

In many physical domains (e.g. biology, medicine,
chemistry, engineering, etc.)

!  the data has been collected and the relevant features
identified

! we cannot collect more features from the examples (at
least “core” features)

In these domains, we can often just use the provided
features

Raw data vs. features

In many other domains, we are provided with the raw
data, but must extract/identify features

For example

!  image data
!  text data
! audio data
!  log data
! …

9/13/16	

3	

How is an image represented? How is an image represented?

•  images are made up of pixels
•  for a color image, each pixel
corresponds to an RGB value
(i.e. three numbers)

Image features

for each pixel: R[0-255]
 G[0-255]
 B[0-255]

Do we retain all the information in the original document?

Image features

for each pixel: R[0-255]
 G[0-255]
 B[0-255]

Other features for images?

9/13/16	

4	

Lots of image features

!  Use “patches” rather than pixels (sort of like
“bigrams” for text)

!  Different color representations (i.e. L*A*B*)
!  Texture features, i.e. responses to filters

!  Shape features
!  …

Obtaining features

Very often requires some domain knowledge

As ML algorithm developers, we often have to trust the
“experts” to identify and extract reasonable features

That said, it can be helpful to understand where the
features are coming from

Current learning model

model/
classifier

lea
rn Terrain Unicycle-

type
Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

training data
(labeled examples)

Pre-process training data

pre-
proc

ess
 data

Terrain Unicycle-
type

Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

training data
(labeled examples)

model/
classifier

lea
rn Terrain Unicycle-

type
Weather Go-For-Ride?

Trail Normal Rainy NO

Road Normal Sunny YES

Trail Mountain Sunny YES

Road Mountain Rainy YES

Trail Normal Snowy NO

Road Normal Rainy YES

Road Mountain Snowy YES

Trail Normal Sunny NO

Road Normal Snowy NO

Trail Mountain Snowy YES

“better” training data

What types of preprocessing might we want to do?

9/13/16	

5	

Outlier detection

What is an outlier?

Outlier detection

An example that is inconsistent
with the other examples

What types of inconsistencies?

Outlier detection

An example that is inconsistent
with the other examples
-  extreme feature values in

one or more dimensions
-  examples with the same

feature values but different
labels

Outlier detection

An example that is inconsistent
with the other examples
-  extreme feature values in

one or more dimensions
-  examples with the same

feature values but different
labels

Fix?

9/13/16	

6	

Removing conflicting examples

Identify examples that have the same features, but
differing values

! For some learning algorithms, this can cause issues (for
example, not converging)

!  In general, unsatisfying from a learning perspective

Can be a bit expensive computationally (examining
all pairs), though faster approaches are available

Outlier detection

An example that is inconsistent
with the other examples
-  extreme feature values in

one or more dimensions
-  examples with the same

feature values but different
labels

How do we identify these?

Removing extreme outliers

Throw out examples that have extreme values in one
dimension

Throw out examples that are very far away from any
other example

Train a probabilistic model on the data and throw out
“very unlikely” examples

This is an entire field of study by itself! Often called
outlier or anomaly detection.

Quick statistics recap

What are the mean, standard deviation, and
variance of data?

9/13/16	

7	

Quick statistics recap

mean: average value, often written as μ

variance: a measure of how much variation there is in
the data. Calculated as:

σ 2 =
(xi −µ)

2

i=1

n
∑

n−1

standard deviation: square root of the variance (written
as σ)

How can these help us with outliers?

Outlier detection

If we know the data is distributed normally (i.e.
via a normal/gaussian distribution)

Outliers in a single dimension

Examples in a single dimension that have values greater than
|kσ| can be discarded (for k >>3)

Even if the data isn’t actually distributed normally, this is still often
reasonable

Outliers for machine learning

Some good practices:
-  Throw out conflicting examples
-  Throw out any examples with obviously extreme

feature values (i.e. many, many standard deviations
away)

-  Check for erroneous feature values (e.g. negative
values for a feature that can only be positive)

-  Let the learning algorithm/other pre-processing
handle the rest

9/13/16	

8	

So far…

1.  Throw out outlier examples
2.  Which features to use

Feature pruning/selection

Good features provide us information that helps us
distinguish between labels. However, not all features are
good

Feature pruning is the process of removing “bad” features

Feature selection is the process of selecting “good” features

What makes a bad feature and why would we have them
in our data?

Bad features

Each of you are going to generate a feature for our
data set: pick 5 random binary numbers

f1 f2 … label

I’ve already labeled these examples
and I have two features

Bad features

label

1
0
1
1
0

If we have a “random” feature, i.e. a
feature with random binary values,
what is the probability that our
feature perfectly predicts the label?

9/13/16	

9	

Bad features

label

1
0
1
1
0

fi

1
0
1
1
0

probability

0.5
0.5
0.5
0.5
0.5

0.55=0.03125 = 1/32

Is that the only way to
get perfect prediction?

Bad features

label

1
0
1
1
0

fi

0
1
0
0
1

probability

0.5
0.5
0.5
0.5
0.5

0.55=0.03125 = 1/32

Total = 1/32+1/32 = 1/16

Why is this a problem?

Although these features perfectly
correlate/predict the training data,
they will generally NOT have any
predictive power on the test set!

Bad features

label

1
0
1
1
0

fi

0
1
0
0
1

probability

0.5
0.5
0.5
0.5
0.5

0.55=0.03125 = 1/32

Total = 1/32+1/32 = 1/16

Is perfect correlation the only
thing we need to worry
about for random features?

Bad features

label

1
0
1
1
0

fi

1
0
1
0
0

Any correlation (particularly any strong
correlation) can affect performance!

9/13/16	

10	

Noisy features

Adding features can give us more information, but not always

Determining if a feature is useful can be challenging

Terrain Unicycle-type Weather Jacket ML grade Go-For-Ride?

Trail Mountain Rainy Heavy D YES

Trail Mountain Sunny Light C- YES

Road Mountain Snowy Light B YES

Road Mountain Sunny Heavy A YES

Trail Normal Snowy Light D+ NO

Trail Normal Rainy Heavy B- NO

Road Normal Snowy Heavy C+ YES

Road Normal Sunny Light A- NO

Trail Normal Sunny Heavy B+ NO

Trail Normal Snowy Light F NO

Trail Normal Rainy Light C YES

Noisy features

These can be particularly problematic in problem
areas where we automatically generate features

Noisy features

Ideas for removing noisy/random features?

Terrain Unicycle-type Weather Jacket ML grade Go-For-Ride?

Trail Mountain Rainy Heavy D YES

Trail Mountain Sunny Light C- YES

Road Mountain Snowy Light B YES

Road Mountain Sunny Heavy A YES

Trail Normal Snowy Light D+ NO

Trail Normal Rainy Heavy B- NO

Road Normal Snowy Heavy C+ YES

Road Normal Sunny Light A- NO

Trail Normal Sunny Heavy B+ NO

Trail Normal Snowy Light F NO

Trail Normal Rainy Light C YES

Removing noisy features

The expensive way:
-  Split training data into train/dev
-  Train a model on all features
-  for each feature f:

-  Train a model on all features – f
-  Compare performance of all vs. all-f on dev set

-  Remove all features where decrease in performance
between all and all-f is less than some constant

Feature ablation study Issues/concerns?

9/13/16	

11	

Removing noisy features

Binary features:
remove “rare” features, i.e. features that only occur (or
don’t occur) a very small number of times

Real-valued features:
remove features that have low variance

In both cases, can either use thresholds, throw away lowest
x%, use development data, etc.

Why?

Some rules of thumb
for the number of features

Be very careful in domains where:
!  the number of features > number of examples
!  the number of features ≈ number of examples
!  the features are generated automatically
!  there is a chance of “random” features

In most of these cases, features should be removed
based on some domain knowledge (i.e. problem-
specific knowledge)

So far…

1.  Throw out outlier examples
2.  Remove noisy features
3.  Pick “good” features

Feature selection

Let’s look at the problem from the other direction, that
is, selecting good features.

What are good features?

How can we pick/select them?

9/13/16	

12	

Good features

A good feature correlates well with the label

label

1
0
1
1
0

1
0
1
1
0

0
1
0
0
1

1
1
1
1
0

…

How can we identify this?
-  training error (like for DT)
-  correlation model
-  statistical test
-  probabilistic test
-  …

Training error feature selection

-  for each feature f:
-  calculate the training error if only feature f were used

to pick the label

-  rank each feature by this value
-  pick top k, top x%, etc.

-  can use a development set to help pick k or x

So far…

1.  Throw out outlier examples
2.  Remove noisy features
3.  Pick “good” features

Feature normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

Would our three classifiers (DT, k-NN and perceptron)
learn the same models on these two data sets?

9/13/16	

13	

Feature normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

Decision trees don’t care about scale, so
they’d learn the same tree

Feature normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

k-NN: NO! The distances are biased based on feature magnitude.

D(a,b) = (a1 − b1)
2 + (a2 − b2)

2 +...+ (an − bn)
2

Feature normalization

Length Weight Label

4 4 Apple

7 5 Apple

5 8 Banana

Length Weight Label

40 4 Apple

70 5 Apple

50 8 Banana

D(a,b) = (a1 − b1)
2 + (a2 − b2)

2 +...+ (an − bn)
2

Which of the two examples are
closest to the first?

Feature normalization

Length Weight Label

4 4 Apple

7 5 Apple

5 8 Banana

Length Weight Label

40 4 Apple

70 5 Apple

50 8 Banana

D(a,b) = (a1 − b1)
2 + (a2 − b2)

2 +...+ (an − bn)
2

D = (7− 4)2 + (5− 4)2 = 10

D = (5− 4)2 + (8− 4)2 = 17

D = (70− 40)2 + (5− 4)2 = 901

D = (70− 50)2 + (8− 4)2 = 416

9/13/16	

14	

Feature normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

perceptron: NO!
The classification and weight update are based on the
magnitude of the feature value

Geometric view of perceptron update

 for each wi:
 wi = wi + fi*label

weights

example

Geometrically, the perceptron update rule is equivalent to
“adding” the weight vector and the feature vector

Geometric view of perceptron update

 for each wi:
 wi = wi + fi*label

weights

example

Geometrically, the perceptron update rule is equivalent to
“adding” the weight vector and the feature vector

new weights

Geometric view of perceptron update

weights

example
weights

example

same f1 value, but larger f2

If the features dimensions differ in scale, it can bias the update

9/13/16	

15	

Geometric view of perceptron update

If the features dimensions differ in scale, it can bias the update

weights

example

weights

example new weights
new weights

-  different separating hyperplanes
-  the larger dimension becomes much more important

Feature normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

How do we fix this?

Feature normalization

Length Weight Color Label

40 4 0 Apple

50 5 1 Apple

70 6 1 Banana

40 3 0 Apple

60 7 1 Banana

50 8 1 Banana

50 6 1 Apple

Modify all values for a given feature

Normalize each feature

For each feature (over all examples):

Center: adjust the values so that the mean of that
feature is 0. How do we do this?

9/13/16	

16	

Normalize each feature

For each feature (over all examples):

Center: adjust the values so that the mean of that
feature is 0: subtract the mean from all values

Rescale/adjust feature values to avoid magnitude
bias. Ideas?

Normalize each feature

For each feature (over all examples):

Center: adjust the values so that the mean of that
feature is 0: subtract the mean from all values

Rescale/adjust feature values to avoid magnitude
bias:

! Variance scaling: divide each value by the std dev
! Absolute scaling: divide each value by the largest value

Pros/cons of either scaling technique?

So far…

1.  Throw out outlier examples
2.  Remove noisy features
3.  Pick “good” features
4.  Normalize feature values

1.  center data
2.  scale data (either variance or absolute)

Example normalization

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

7 6 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

Any problem with this?
Solutions?

Length Weight Color Label

4 4 0 Apple

5 5 1 Apple

70 60 1 Banana

4 3 0 Apple

6 7 1 Banana

5 8 1 Banana

5 6 1 Apple

9/13/16	

17	

Example length normalization

Make all examples roughly the same scale, e.g. make all
have length = 1

What is the length of this example/vector?

(x1, x2)

Example length normalization

Make all examples roughly the same scale, e.g. make all
have length = 1

What is the length of this example/vector?

(x1, x2)

length(x) = x = x1
2 + x2

2

Example length normalization

Make all examples roughly the same scale, e.g. make all
have length = 1

What is the length of this example/vector?

(x1, x2)

length(x) = x = x1
2 + x2

2 +...+ xn
2

Example length normalization

Make all examples have length = 1

Divide each feature value by ||x||

length(x) = x = x1
2 + x2

2 +...+ xn
2

-  Prevents a single example from being too impactful
-  Equivalent to projecting each example onto a unit

sphere

9/13/16	

18	

So far…

1.  Throw out outlier examples
2.  Remove noisy features
3.  Pick “good” features
4.  Normalize feature values

1.  center data
2.  scale data (either variance or absolute)

5.  Normalize example length
6.  Finally, train your model!

