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FEATURE PRE-PROCESSING 

David Kauchak 
CS 158 – Fall 2016 

Admin 

Assignment 2 
!    This class will make you a better programmer! 
!    How did it go? 
!    How much time did you spend? 

Assignment 3 out 
!  Implement perceptron variants 
!  See how they differ in performance 

 
 
 

Features 

Where do they come from? 

Terrain Unicycle-
type 

Weather Go-For-Ride? 

Trail Normal Rainy NO 

Road Normal Sunny YES 

Trail Mountain Sunny YES 

Road Mountain Rainy YES 

Trail Normal Snowy NO 

Road Normal Rainy YES 

Road Mountain Snowy YES 

Trail Normal Sunny NO 

Road Normal Snowy NO 

Trail Mountain Snowy YES 

UCI Machine Learning Repository 

http://archive.ics.uci.edu/ml/datasets.html 
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Provided features 

Predicting the age of abalone from physical measurements 

Name / Data Type / Measurement Unit / Description  
-----------------------------  
Sex / nominal / -- / M, F, and I (infant)  
Length / continuous / mm / Longest shell measurement  
Diameter / continuous / mm / perpendicular to length  
Height / continuous / mm / with meat in shell  
Whole weight / continuous / grams / whole abalone  
Shucked weight / continuous   / grams / weight of meat  
Viscera weight / continuous / grams / gut weight (after bleeding)  
Shell weight / continuous / grams / after being dried  
Rings / integer / -- / +1.5 gives the age in years  

Provided features 

1. Class: no-recurrence-events, recurrence-events  
2. age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99.  
3. menopause: lt40, ge40, premeno.  
4. tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 
55-59.  
5. inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 
33-35, 36-39.  
6. node-caps: yes, no.  
7. deg-malig: 1, 2, 3.  
8. breast: left, right.  
9. breast-quad: left-up, left-low, right-up, right-low, central.  
10. irradiated: yes, no. 

Predicting breast cancer recurrence 

Provided features 

In many physical domains (e.g. biology, medicine, 
chemistry, engineering, etc.) 

!  the data has been collected and the relevant features 
identified 

! we cannot collect more features from the examples (at 
least “core” features) 

 
In these domains, we can often just use the provided 
features 

Raw data vs. features 

In many other domains, we are provided with the raw 
data, but must extract/identify features 
 
For example 

!  image data 
!  text data 
! audio data 
!  log data 
! … 
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How is an image represented? How is an image represented? 

•  images are made up of pixels 
•  for a color image, each pixel 
corresponds to an RGB value 
(i.e. three numbers) 

Image features 

for each pixel:  R[0-255] 
      G[0-255] 
   B[0-255] 

Do we retain all the information in the original document? 

Image features 

for each pixel:  R[0-255] 
      G[0-255] 
   B[0-255] 

Other features for images? 
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Lots of image features 

!  Use “patches” rather than pixels (sort of like 
“bigrams” for text) 

!  Different color representations (i.e. L*A*B*) 
!  Texture features, i.e. responses to filters 

!  Shape features 
!  … 

Obtaining features 

Very often requires some domain knowledge 
 
As ML algorithm developers, we often have to trust the 
“experts” to identify and extract reasonable features 
 
That said, it can be helpful to understand where the 
features are coming from 

Current learning model 

model/ 
classifier 

lea
rn Terrain Unicycle-

type 
Weather Go-For-Ride? 

Trail Normal Rainy NO 

Road Normal Sunny YES 

Trail Mountain Sunny YES 

Road Mountain Rainy YES 

Trail Normal Snowy NO 

Road Normal Rainy YES 

Road Mountain Snowy YES 

Trail Normal Sunny NO 

Road Normal Snowy NO 

Trail Mountain Snowy YES 

training data 
(labeled examples) 

Pre-process training data 

pre-
proc

ess
 data 

Terrain Unicycle-
type 

Weather Go-For-Ride? 

Trail Normal Rainy NO 

Road Normal Sunny YES 

Trail Mountain Sunny YES 

Road Mountain Rainy YES 

Trail Normal Snowy NO 

Road Normal Rainy YES 

Road Mountain Snowy YES 

Trail Normal Sunny NO 

Road Normal Snowy NO 

Trail Mountain Snowy YES 

training data 
(labeled examples) 

model/ 
classifier 

lea
rn Terrain Unicycle-

type 
Weather Go-For-Ride? 

Trail Normal Rainy NO 

Road Normal Sunny YES 

Trail Mountain Sunny YES 

Road Mountain Rainy YES 

Trail Normal Snowy NO 

Road Normal Rainy YES 

Road Mountain Snowy YES 

Trail Normal Sunny NO 

Road Normal Snowy NO 

Trail Mountain Snowy YES 

“better” training data 

What types of preprocessing might we want to do? 
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Outlier detection 

What is an outlier? 

Outlier detection 

An example that is inconsistent 
with the other examples 

What types of inconsistencies? 

Outlier detection 

An example that is inconsistent 
with the other examples 
-  extreme feature values in 

one or more dimensions 
-  examples with the same 

feature values but different 
labels 

Outlier detection 

An example that is inconsistent 
with the other examples 
-  extreme feature values in 

one or more dimensions 
-  examples with the same 

feature values but different 
labels 

Fix? 
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Removing conflicting examples 

Identify examples that have the same features, but 
differing values 

! For some learning algorithms, this can cause issues (for 
example, not converging) 

!  In general, unsatisfying from a learning perspective 

 
Can be a bit expensive computationally (examining 
all pairs), though faster approaches are available 

Outlier detection 

An example that is inconsistent 
with the other examples 
-  extreme feature values in 

one or more dimensions 
-  examples with the same 

feature values but different 
labels 

How do we identify these? 

Removing extreme outliers 

Throw out examples that have extreme values in one 
dimension 
 
Throw out examples that are very far away from any 
other example 
 
Train a probabilistic model on the data and throw out 
“very unlikely” examples 
 
This is an entire field of study by itself!  Often called 
outlier or anomaly detection. 

Quick statistics recap 

What are the mean, standard deviation, and 
variance of data? 
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Quick statistics recap 

mean: average value, often written as μ  

variance: a measure of how much variation there is in 
the data.  Calculated as: 

σ 2 =
(xi −µ)

2

i=1

n
∑

n−1

standard deviation: square root of the variance (written 
as σ) 

How can these help us with outliers? 

Outlier detection 

If we know the data is distributed normally (i.e. 
via a normal/gaussian distribution) 

Outliers in a single dimension 

Examples in a single dimension that have values greater than  
|kσ| can be discarded (for k >>3) 

 

Even if the data isn’t actually distributed normally, this is still often 
reasonable 

Outliers for machine learning 

Some good practices: 
-  Throw out conflicting examples 
-  Throw out any examples with obviously extreme 

feature values (i.e. many, many standard deviations 
away) 

-  Check for erroneous feature values (e.g. negative 
values for a feature that can only be positive) 

-  Let the learning algorithm/other pre-processing 
handle the rest 
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So far… 

1.  Throw out outlier examples 
2.  Which features to use 

Feature pruning/selection 

Good features provide us information that helps us 
distinguish between labels.  However, not all features are 
good 
 
Feature pruning is the process of removing “bad” features 
 
Feature selection is the process of selecting “good” features 
 
What makes a bad feature and why would we have them 
in our data? 

Bad features 

Each of you are going to generate a feature for our 
data set: pick 5 random binary numbers 

f1 f2 … label 

I’ve already labeled these examples 
and I have two features 

Bad features 

label 

1 
0 
1 
1 
0 

If we have a “random” feature, i.e. a 
feature with random binary values, 
what is the probability that our 
feature perfectly predicts the label? 
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Bad features 

label 

1 
0 
1 
1 
0 

fi 

1 
0 
1 
1 
0 

probability 

0.5 
0.5 
0.5 
0.5 
0.5 

0.55=0.03125 = 1/32 

Is that the only way to 
get perfect prediction? 

Bad features 

label 

1 
0 
1 
1 
0 

fi 

0 
1 
0 
0 
1 

probability 

0.5 
0.5 
0.5 
0.5 
0.5 

0.55=0.03125 = 1/32 

Total = 1/32+1/32 = 1/16 

Why is this a problem? 

Although these features perfectly 
correlate/predict the training data, 
they will generally NOT have any 
predictive power on the test set! 

Bad features 

label 

1 
0 
1 
1 
0 

fi 

0 
1 
0 
0 
1 

probability 

0.5 
0.5 
0.5 
0.5 
0.5 

0.55=0.03125 = 1/32 

Total = 1/32+1/32 = 1/16 

Is perfect correlation the only 
thing we need to worry 
about for random features? 

Bad features 

label 

1 
0 
1 
1 
0 

fi 

1 
0 
1 
0 
0 

Any correlation (particularly any strong 
correlation) can affect performance! 



9/13/16	
  

10	
  

Noisy features 

Adding features can give us more information, but not always 
 

Determining if a feature is useful can be challenging 

Terrain Unicycle-type Weather Jacket ML grade Go-For-Ride? 

Trail Mountain Rainy Heavy D YES 

Trail Mountain Sunny Light C- YES 

Road Mountain Snowy Light B YES 

Road Mountain Sunny Heavy A YES 

Trail Normal Snowy Light D+ NO 

Trail Normal Rainy Heavy B- NO 

Road Normal Snowy Heavy C+ YES 

Road Normal Sunny Light A- NO 

Trail Normal Sunny Heavy B+ NO 

Trail Normal Snowy Light F NO 

Trail Normal Rainy Light C YES 

Noisy features 

These can be particularly problematic in problem 
areas where we automatically generate features 

Noisy features 

Ideas for removing noisy/random features? 

Terrain Unicycle-type Weather Jacket ML grade Go-For-Ride? 

Trail Mountain Rainy Heavy D YES 

Trail Mountain Sunny Light C- YES 

Road Mountain Snowy Light B YES 

Road Mountain Sunny Heavy A YES 

Trail Normal Snowy Light D+ NO 

Trail Normal Rainy Heavy B- NO 

Road Normal Snowy Heavy C+ YES 

Road Normal Sunny Light A- NO 

Trail Normal Sunny Heavy B+ NO 

Trail Normal Snowy Light F NO 

Trail Normal Rainy Light C YES 

Removing noisy features 

The expensive way: 
-  Split training data into train/dev 
-  Train a model on all features 
-  for each feature f: 

-  Train a model on all features – f 
-  Compare performance of all vs. all-f on dev set 

-  Remove all features where decrease in performance 
between all and all-f is less than some constant 

Feature ablation study Issues/concerns? 
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Removing noisy features 

Binary features: 
remove “rare” features, i.e. features that only occur (or 
don’t occur) a very small number of times 
 
Real-valued features: 
remove features that have low variance 
 
In both cases, can either use thresholds, throw away lowest 
x%, use development data, etc. 

Why? 

Some rules of thumb  
for the number of features 

Be very careful in domains where: 
!  the number of features > number of examples 
!  the number of features ≈ number of examples 
!  the features are generated automatically 
!  there is a chance of “random” features 
 

In most of these cases, features should be removed 
based on some domain knowledge (i.e. problem-
specific knowledge) 

So far… 

1.  Throw out outlier examples 
2.  Remove noisy features 
3.  Pick “good” features 

Feature selection 

Let’s look at the problem from the other direction, that 
is, selecting good features. 
 
What are good features? 
 
How can we pick/select them? 
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Good features 

A good feature correlates well with the label 

label 

1 
0 
1 
1 
0 

1 
0 
1 
1 
0 

0 
1 
0 
0 
1 

1 
1 
1 
1 
0 

… 

How can we identify this? 
-  training error (like for DT) 
-  correlation model 
-  statistical test 
-  probabilistic test 
-  … 

Training error feature selection 

-  for each feature f: 
-  calculate the training error if only feature f were used 

to pick the label 

-  rank each feature by this value 
-  pick top k, top x%, etc. 

-  can use a development set to help pick k or x 

So far… 

1.  Throw out outlier examples 
2.  Remove noisy features 
3.  Pick “good” features 

Feature normalization 

Length Weight Color Label 

4 4 0 Apple 

5 5 1 Apple 

7 6 1 Banana 

4 3 0 Apple 

6 7 1 Banana 

5 8 1 Banana 

5 6 1 Apple 

Length Weight Color Label 

40 4 0 Apple 

50 5 1 Apple 

70 6 1 Banana 

40 3 0 Apple 

60 7 1 Banana 

50 8 1 Banana 

50 6 1 Apple 

Would our three classifiers (DT, k-NN and perceptron) 
learn the same models on these two data sets?  
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Feature normalization 

Length Weight Color Label 

4 4 0 Apple 

5 5 1 Apple 

7 6 1 Banana 

4 3 0 Apple 

6 7 1 Banana 

5 8 1 Banana 

5 6 1 Apple 

Length Weight Color Label 

40 4 0 Apple 

50 5 1 Apple 

70 6 1 Banana 

40 3 0 Apple 

60 7 1 Banana 

50 8 1 Banana 

50 6 1 Apple 

Decision trees don’t care about scale, so 
they’d learn the same tree 

Feature normalization 

Length Weight Color Label 

4 4 0 Apple 

5 5 1 Apple 

7 6 1 Banana 

4 3 0 Apple 

6 7 1 Banana 

5 8 1 Banana 

5 6 1 Apple 

Length Weight Color Label 

40 4 0 Apple 

50 5 1 Apple 

70 6 1 Banana 

40 3 0 Apple 

60 7 1 Banana 

50 8 1 Banana 

50 6 1 Apple 

k-NN: NO!  The distances are biased based on feature magnitude. 

D(a,b) = (a1 − b1)
2 + (a2 − b2 )

2 +...+ (an − bn )
2

Feature normalization 

Length Weight Label 

4 4 Apple 

7 5 Apple 

5 8 Banana 

Length Weight Label 

40 4 Apple 

70 5 Apple 

50 8 Banana 

D(a,b) = (a1 − b1)
2 + (a2 − b2 )

2 +...+ (an − bn )
2

Which of the two examples are 
closest to the first? 

Feature normalization 

Length Weight Label 

4 4 Apple 

7 5 Apple 

5 8 Banana 

Length Weight Label 

40 4 Apple 

70 5 Apple 

50 8 Banana 

D(a,b) = (a1 − b1)
2 + (a2 − b2 )

2 +...+ (an − bn )
2

D = (7− 4)2 + (5− 4)2 = 10

D = (5− 4)2 + (8− 4)2 = 17

D = (70− 40)2 + (5− 4)2 = 901

D = (70− 50)2 + (8− 4)2 = 416
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Feature normalization 

Length Weight Color Label 

4 4 0 Apple 

5 5 1 Apple 

7 6 1 Banana 

4 3 0 Apple 

6 7 1 Banana 

5 8 1 Banana 

5 6 1 Apple 

Length Weight Color Label 

40 4 0 Apple 

50 5 1 Apple 

70 6 1 Banana 

40 3 0 Apple 

60 7 1 Banana 

50 8 1 Banana 

50 6 1 Apple 

perceptron: NO!  
The classification and weight update are based on the 
magnitude of the feature value 

Geometric view of perceptron update 

 for each wi: 
           wi = wi + fi*label 

weights 

example 

Geometrically, the perceptron update rule is equivalent to 
“adding” the weight vector and the feature vector 

Geometric view of perceptron update 

 for each wi: 
           wi = wi + fi*label 

weights 

example 

Geometrically, the perceptron update rule is equivalent to 
“adding” the weight vector and the feature vector 

new weights 

Geometric view of perceptron update 

weights 

example 
weights 

example 

same f1 value, but larger f2 

If the features dimensions differ in scale, it can bias the update 
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Geometric view of perceptron update 

If the features dimensions differ in scale, it can bias the update 

weights 

example 

weights 

example new weights 
new weights 

-  different separating hyperplanes 
-  the larger dimension becomes much more important 

Feature normalization 

Length Weight Color Label 

4 4 0 Apple 

5 5 1 Apple 

7 6 1 Banana 

4 3 0 Apple 

6 7 1 Banana 

5 8 1 Banana 

5 6 1 Apple 

Length Weight Color Label 

40 4 0 Apple 

50 5 1 Apple 

70 6 1 Banana 

40 3 0 Apple 

60 7 1 Banana 

50 8 1 Banana 

50 6 1 Apple 

How do we fix this? 

Feature normalization 

Length Weight Color Label 

40 4 0 Apple 

50 5 1 Apple 

70 6 1 Banana 

40 3 0 Apple 

60 7 1 Banana 

50 8 1 Banana 

50 6 1 Apple 

Modify all values for a given feature 

Normalize each feature 

For each feature (over all examples): 
 
Center:  adjust the values so that the mean of that 
feature is 0.  How do we do this? 
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Normalize each feature 

For each feature (over all examples): 
 
Center:  adjust the values so that the mean of that 
feature is 0: subtract the mean from all values 
 
Rescale/adjust feature values to avoid magnitude 
bias.  Ideas? 

Normalize each feature 

For each feature (over all examples): 
 
Center:  adjust the values so that the mean of that 
feature is 0: subtract the mean from all values 
 
Rescale/adjust feature values to avoid magnitude 
bias: 

! Variance scaling: divide each value by the std dev 
! Absolute scaling: divide each value by the largest value 

Pros/cons of either scaling technique? 

So far… 

1.  Throw out outlier examples 
2.  Remove noisy features 
3.  Pick “good” features 
4.  Normalize feature values 

1.  center data 
2.  scale data (either variance or absolute) 

Example normalization 

Length Weight Color Label 

4 4 0 Apple 

5 5 1 Apple 

7 6 1 Banana 

4 3 0 Apple 

6 7 1 Banana 

5 8 1 Banana 

5 6 1 Apple 

Any problem with this? 
Solutions? 

Length Weight Color Label 

4 4 0 Apple 

5 5 1 Apple 

70 60 1 Banana 

4 3 0 Apple 

6 7 1 Banana 

5 8 1 Banana 

5 6 1 Apple 
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Example length normalization 

Make all examples roughly the same scale, e.g. make all 
have length = 1 
 
 
What is the length of this example/vector? 

(x1, x2) 

Example length normalization 

Make all examples roughly the same scale, e.g. make all 
have length = 1 
 
 
What is the length of this example/vector? 

(x1, x2) 

length(x) = x = x1
2 + x2

2

Example length normalization 

Make all examples roughly the same scale, e.g. make all 
have length = 1 
 
 
What is the length of this example/vector? 

(x1, x2) 

length(x) = x = x1
2 + x2

2 +...+ xn
2

Example length normalization 

Make all examples have length = 1 
 
 
Divide each feature value by ||x|| 

length(x) = x = x1
2 + x2

2 +...+ xn
2

-  Prevents a single example from being too impactful 
-  Equivalent to projecting each example onto a unit 

sphere 
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So far… 

1.  Throw out outlier examples 
2.  Remove noisy features 
3.  Pick “good” features 
4.  Normalize feature values 

1.  center data 
2.  scale data (either variance or absolute) 

5.  Normalize example length 
6.  Finally, train your model! 


