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LOGISTIC REGRESSION 
David Kauchak 
CS158 – Fall 2016 

Admin 

Assignment 7 
 
Earthquake drill 

Priors 

Coin1 data: 3 Heads and 1 Tail 
Coin2 data: 30 Heads and 10 tails 
Coin3 data: 2 Tails 
Coin4 data:  497 Heads and 503 tails 
 
If someone asked you what the probability of heads 
was for each of these coins, what would you say? 

Basic steps for probabilistic modeling 

Which model do we use, 
i.e. how do we calculate 
p(feature, label)? 
 
How do train the model, 
i.e. how to we we 
estimate the probabilities 
for the model? 
 
How do we deal with 
overfitting? 
 

Probabilistic models 

Step 1: pick a model 
 
 
Step 2: figure out how to 
estimate the probabilities for 
the model 
 
 
Step 3 (optional): deal with 
overfitting 
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Training revisited 

What we’re really doing during training is selecting 
the Θ that maximizes:  

p(θ | data)

That is we pick the most likely model parameters given the data 

θ = argmaxθ p(θ | data)
i.e. 

Estimating revisited 

p(θ | data) = ?

We want to incorporate a prior belief of what the 
probabilities might be 
 
To do this, we need to break down our probability 

(Hint: Bayes rule) 

Estimating revisited 

What are each of these probabilities? 

p(θ | data) = p(data |θ )p(θ )
p(data)

Priors 

p(θ | data) = p(data |θ )p(θ )
p(data)

likelihood of the data 
under the model 

probability of different parameters, 
call the prior 

probability of seeing the data 
(regardless of model) 
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Priors 

θ = argmaxθ
p(data |θ )p(θ )

p(data)

Does p(data) matter for the argmax? 

Priors 

θ = argmaxθ p(data |θ )p(θ )

likelihood of the data 
under the model 

probability of different parameters, 
call the prior 

What does MLE assume for a prior on the 
model parameters? 

Priors 

θ = argmaxθ p(data |θ )p(θ )

likelihood of the data 
under the model 

probability of different parameters, 
call the prior 

-  Assumes a uniform prior, i.e. all Θ are equally likely! 
-  Relies solely on the likelihood 

A better approach 

θ = argmaxθ p(data |θ )p(θ )

likelihood(data) = pθ (xi )
i=1

n

∏ We can use any distribution we’d like. 
 
This allows us to impart addition bias 
into the model 
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Another view on the prior 

θ = argmaxθ log(p(data |θ ))+ log(p(θ ))

Remember, the max is the same if we take the log: 

log- likelihood = log(p(xi ))
i=1

n

∑
We can use any distribution we’d like. 
 
This allows us to impart addition bias 
into the model 

Does this look like something we’ve seen before? 

Regularization vs prior 

θ = argmaxθ log(p(data |θ ))+ log(p(θ ))

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w)

loss function based on the data 

likelihood based on the data 

regularizer 

prior 
fit  model bias 

Prior for NB 

θ = argmaxθ log(p(data |θ ))+ log(p(θ ))

Uniform prior Dirichlet prior 

p(xi | y) =
count(xi, y)
count(y)

λ= 0 
increasing 

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ

Prior: another view 

p(x1, x2,..., xm, y) = p(y) p(xi
j=1

m

∏ | y)

What happens to our likelihood if, for one of the 
labels, we never saw a particular feature? 

p(xi | y) =
count(xi, y)
count(y)MLE: 

Goes to 0! 
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Prior: another view 

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ

p(xi | y) =
count(xi, y)
count(y)

Adding a prior avoids this! 

Smoothing 

tra
in

in
g 

da
ta

 

for each label, pretend like 
we’ve seen each feature value 
occur in λ additional examples 

p(xi | y) =
count(xi, y)
count(y)

Sometimes this is also called smoothing 
because it is seen as smoothing or interpolating 
between the MLE and some other distribution 

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ

Basic steps for probabilistic modeling 

Which model do we use, 
i.e. how do we calculate 
p(feature, label)? 
 
How do train the model, 
i.e. how to we we 
estimate the probabilities 
for the model? 
 
How do we deal with 
overfitting? 
 

Probabilistic models 

Step 1: pick a model 
 
 
Step 2: figure out how to 
estimate the probabilities for 
the model 
 
 
Step 3 (optional): deal with 
overfitting 

Joint models vs conditional models 

p(x1, x2,..., xm, y)

We’ve been trying to model the joint distribution (i.e. the data 
generating distribution): 

However, if all we’re interested in is classification, why not directly 
model the conditional distribution: 

p(y | x1, x2,..., xm )
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A first try: linear 

p(y | x1, x2,..., xm ) = x1w1 +w2x2 +...+wmxm + b

- Nothing constrains it to be a probability 
- Could still have combination of features and 
weight that exceeds 1 or is below 0 

Any problems with this? 

The challenge 

Linear model 
+∞ 

-∞ 

1 

0 

probability 

p(y | x1, x2,..., xm )

We like linear models!  
 
Can we transform the probability into 
a function that ranges over all 
values?  

x1w1 +w2x2 +...+wmxm + b

Odds ratio 

Rather than predict the probability, we can predict the ratio of 1/0 
(positive/negative) 

 

Predict the odds that it is 1 (true): How much more likely is 1 than 0. 

 

Does this help us? 

P(1 | x1, x2,..., xm )
P(0 | x1, x2,..., xm )

=
P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= x1w1 +w2x2 +...+wmxm + b

Odds ratio 

Linear model 
+∞ 

-∞ 

+∞ 
 

0 

odds ratio 

Where is the dividing line 
between class 1 and  
class 0 being selected? 

€ 

P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

x1w1 +w2x2 +...+wmxm + b
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Odds ratio 

Does this suggest another transformation? 
 

€ 

P(1 | x1,x2,...,xm )
1− P(1 | x1,x2,...,xm )

€ 

P(1 | x1,x2,...,xm ) >1− P(1 | x1,x2,...,xm )

€ 

P(1 | x1,x2,...,xm ) > P(0 | x1,x2,...,xm )

0    1     2    3    4    5    6     7     8    9   …. 

odds ratio 

We’re trying to find some transformation that transforms 
the odds ratio to a number that is -∞ to +∞ 

0    1     2    3    4    5    6     7     8    9   …. 

Log odds (logit function) 

Linear regression 
+∞ 

-∞ 

x1w1 +w2x2 +...+wmxm + b

+∞ 
 

-∞ 

odds ratio 

€ 

log
P(1 | x1,x2,...,xm )

1− P(1 | x1,x2,...,xm )

How do we get the probability of 
an example? 

= 

Log odds (logit function) 

log P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= w1x2 +w2x2 +...+wmxm + b

P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= ew1x2+w2x2+...+wmxm+b

P(1 | x1, x2,..., xm ) = (1−P(1 | x1, x2,..., xm ))e
w1x2+w2x2+...+wmxm+b

P(1 | x1, x2,..., xm ) =
1

1+ e−(w1x2+w2x2+...+wmxm+b)

… 
anyone 
recognize 
this? 
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Logistic function 

logistic = 1
1+ e−x

Logistic regression 

How would we classify examples once we had a trained 
model? 

If the sum > 0 then p(1)/p(0) > 1, so positive 
 
if the sum < 0 then p(1)/p(0) < 1, so negative 
 
Still a linear classifier (decision boundary is a line) 

log P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= w1x2 +w2x2 +...+wmxm + b

Training logistic regression models 

How should we learn the parameters for logistic 
regression (i.e. the w’s and b)? 

log P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= w1x2 +w2x2 +...+wmxm + b

P(1 | x1, x2,..., xm ) =
1

1+ e−(w1x2+w2x2+...+wmxm+b)

parameters 

MLE logistic regression 

log- likelihood = log(p(xi ))
i=1

n

∑

= log 1
1+ e−yi (w1x2+w2x2+...+wmxm+b)
"

#
$

%

&
'

i=1

n

∑

= − log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

assume labels 1, -1 

Find the parameters that maximize the likelihood (or log-likelihood) of the data: 
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MLE logistic regression 

log- likelihood = − log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

We want to maximize, i.e. 

MLE(data) = argmaxw,b log- likelihood(data)

= argmaxw,b − log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

= argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

Look familiar?  Hint: anybody read the book? 

MLE logistic regression 

Surrogate loss functions: 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

logistic regression: three views 

€ 

log
P(1 | x1,x2,...,xm )

1− P(1 | x1,x2,...,xm )
= w0 + w1x2 + w2x2 + ...+ wmxm

€ 

P(1 | x1,x2,...,xm ) =
1

1+ e−(w0 +w1x2 +w2x2 +...+wmxm )

linear classifier 

conditional model 
logistic 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑
linear model 
minimizing logistic loss 

Overfitting 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑

If we minimize this loss function, in practice, the results 
aren’t great and we tend to overfit 

Solution? 
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Regularization/prior 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λregularizer(w,b)

or 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ − log(p(w,b))

What are some of the regularizers we know? 

Regularization/prior 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λ w 2

L2 regularization: 

Gaussian prior: 

p(w,b) ~   

Regularization/prior 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λ w 2

L2 regularization: 

Gaussian prior: 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +
1
2σ 2 w 2

λ =
1
2σ 2Does theλmake sense? 

Regularization/prior 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λ w 2

L2 regularization: 

Gaussian prior: 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +
1
2σ 2 w 2

λ =
1
2σ 2
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Regularization/prior 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λ w

L1 regularization: 

Laplacian prior: 

p(w,b) ~   

Regularization/prior 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +λ w

L1 regularization: 

Laplacian prior: 

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b) )
i=1

n

∑ +
1
σ

w

λ =
1
2σ 2

L1 vs. L2 

L1 = Laplacian prior L2 = Gaussian prior 

Logistic regression 

Why is it called logistic regression? 
It is a classifier?? 

log P(1 | x1, x2,..., xm )
1−P(1 | x1, x2,..., xm )

= w1x2 +w2x2 +...+wmxm + b
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A digression:  
regression vs. classification 

Raw data Label 

0 

0 

1 

1 

0 

extract 
features 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

f1, f2, f3, …, fn 

features Label 

classification: 
discrete (some finite 
set of labels) 
 
regression: real 
value 

linear regression 

Given some points, find the line 
that best fits/explains the data 
 
Our model is a line, i.e. we’re 
assuming a linear relationship 
between the feature and the 
label value 

How can we find this line? 

f1 

response  
(y) 

h(y) = w1x1 + b

Linear regression 

Learn a line h that minimizes some loss/error 
function: 

€ 

error(h) = ?

feature (x) 

response  
(y) 

Sum of the individual errors: 

€ 

error(h) = yi − h( fi)i=1

n
∑

0/1 loss! 

Error minimization 

How do we find the minimum of an equation? 

Take the derivative, set to 0 and solve (going to be a min 
or a max) 
 
Any problems here? 
 
Ideas? 

€ 

error(h) = yi − h( fi)i=1

n
∑
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Linear regression 

€ 

error(h) = (yi − h( fi))
2

i=1

n
∑

feature 

response € 

error(h) = yi − h( fi)i=1

n
∑

squared error is convex! 

Linear regression 

Learn a line h that minimizes an error 
function: 

€ 

error(h) = (yi − h( fi))
2

i=1

n
∑

error(h) = (yi − (w1x1 +w0 ))
2

i=1

n
∑

in the case of a 2d line: 

function for a line 
feature 

response 

Linear regression 

We’d like to minimize the error 
Find w1 and w0 such that the error is minimized 

We can solve this in closed form 
€ 

error(h) = (yi − (w1 f i + w0))
2

i=1

n
∑

Multiple linear regression 

If we have m features, then we have a line in m dimensions 

€ 

h( f ) = w0 + w1 f1 + w2 f2 + ...+ wm fm

weights 
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Multiple linear regression 

We can still calculate the squared error like before 

€ 

error(h) = (yi − (w0 + w1 f1 + w2 f2 + ...+ wm fm ))
2

i=1

n
∑

Still can solve this exactly! 

€ 

h( f ) = w0 + w1 f1 + w2 f2 + ...+ wm fm

Logistic function 

logistic = 1
1+ e−x

Logistic regression 

Find the best fit of the data based on a logistic 

Basic steps for probabilistic modeling 

Which model do we use, 
i.e. how do we calculate 
p(feature, label)? 
 
How do train the model, 
i.e. how to we we 
estimate the probabilities 
for the model? 
 
How do we deal with 
overfitting? 
 

Probabilistic models 

Step 1: pick a model 
 
 
Step 2: figure out how to 
estimate the probabilities for 
the model 
 
 
Step 3 (optional): deal with 
overfitting 
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Probabilistic models summarized 

Two classification models: 
! Naïve Bayes (models joint distribution) 
! Logistic Regression (models conditional distribution) 

!  In practice this tends to work better if all you want to do is 
classify 

Priors/smoothing/regularization 
!  Important for both models 
!  In theory: allow us to impart some prior knowledge 
!  In practice: avoids overfitting and often tune on 

development data 


