
10/20/16	

1	

LOGISTIC REGRESSION
David Kauchak
CS158 – Fall 2016

Admin

Assignment 7

Earthquake drill

Priors

Coin1 data: 3 Heads and 1 Tail
Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails
Coin4 data: 497 Heads and 503 tails

If someone asked you what the probability of heads
was for each of these coins, what would you say?

Basic steps for probabilistic modeling

Which model do we use,
i.e. how do we calculate
p(feature, label)?

How do train the model,
i.e. how to we we
estimate the probabilities
for the model?

How do we deal with
overfitting?

Probabilistic models

Step 1: pick a model

Step 2: figure out how to
estimate the probabilities for
the model

Step 3 (optional): deal with
overfitting

10/20/16	

2	

Training revisited

What we’re really doing during training is selecting
the Θ that maximizes:

p(θ | data)

That is we pick the most likely model parameters given the data

θ = argmaxθ p(θ | data)
i.e.

Estimating revisited

p(θ | data) = ?

We want to incorporate a prior belief of what the
probabilities might be

To do this, we need to break down our probability

(Hint: Bayes rule)

Estimating revisited

What are each of these probabilities?

p(θ | data) = p(data |θ)p(θ)
p(data)

Priors

p(θ | data) = p(data |θ)p(θ)
p(data)

likelihood of the data
under the model

probability of different parameters,
call the prior

probability of seeing the data
(regardless of model)

10/20/16	

3	

Priors

θ = argmaxθ
p(data |θ)p(θ)

p(data)

Does p(data) matter for the argmax?

Priors

θ = argmaxθ p(data |θ)p(θ)

likelihood of the data
under the model

probability of different parameters,
call the prior

What does MLE assume for a prior on the
model parameters?

Priors

θ = argmaxθ p(data |θ)p(θ)

likelihood of the data
under the model

probability of different parameters,
call the prior

-  Assumes a uniform prior, i.e. all Θ are equally likely!
-  Relies solely on the likelihood

A better approach

θ = argmaxθ p(data |θ)p(θ)

likelihood(data) = pθ (xi)
i=1

n

∏ We can use any distribution we’d like.

This allows us to impart addition bias
into the model

10/20/16	

4	

Another view on the prior

θ = argmaxθ log(p(data |θ))+ log(p(θ))

Remember, the max is the same if we take the log:

log- likelihood = log(p(xi))
i=1

n

∑
We can use any distribution we’d like.

This allows us to impart addition bias
into the model

Does this look like something we’ve seen before?

Regularization vs prior

θ = argmaxθ log(p(data |θ))+ log(p(θ))

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w)

loss function based on the data

likelihood based on the data

regularizer

prior
fit model bias

Prior for NB

θ = argmaxθ log(p(data |θ))+ log(p(θ))

Uniform prior Dirichlet prior

p(xi | y) =
count(xi, y)
count(y)

λ= 0
increasing

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ

Prior: another view

p(x1, x2,..., xm, y) = p(y) p(xi
j=1

m

∏ | y)

What happens to our likelihood if, for one of the
labels, we never saw a particular feature?

p(xi | y) =
count(xi, y)
count(y)MLE:

Goes to 0!

10/20/16	

5	

Prior: another view

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ

p(xi | y) =
count(xi, y)
count(y)

Adding a prior avoids this!

Smoothing

tra
in

in
g

da
ta

for each label, pretend like
we’ve seen each feature value
occur in λ additional examples

p(xi | y) =
count(xi, y)
count(y)

Sometimes this is also called smoothing
because it is seen as smoothing or interpolating
between the MLE and some other distribution

p(xi | y) =
count(xi, y)+λ

count(y)+ possible_ values_of _ xi *λ

Basic steps for probabilistic modeling

Which model do we use,
i.e. how do we calculate
p(feature, label)?

How do train the model,
i.e. how to we we
estimate the probabilities
for the model?

How do we deal with
overfitting?

Probabilistic models

Step 1: pick a model

Step 2: figure out how to
estimate the probabilities for
the model

Step 3 (optional): deal with
overfitting

Joint models vs conditional models

p(x1, x2,..., xm, y)

We’ve been trying to model the joint distribution (i.e. the data
generating distribution):

However, if all we’re interested in is classification, why not directly
model the conditional distribution:

p(y | x1, x2,..., xm)

10/20/16	

6	

A first try: linear

p(y | x1, x2,..., xm) = x1w1 +w2x2 +...+wmxm + b

- Nothing constrains it to be a probability
- Could still have combination of features and
weight that exceeds 1 or is below 0

Any problems with this?

The challenge

Linear model
+∞

-∞

1

0

probability

p(y | x1, x2,..., xm)

We like linear models!

Can we transform the probability into
a function that ranges over all
values?

x1w1 +w2x2 +...+wmxm + b

Odds ratio

Rather than predict the probability, we can predict the ratio of 1/0
(positive/negative)

Predict the odds that it is 1 (true): How much more likely is 1 than 0.

Does this help us?

P(1 | x1, x2,..., xm)
P(0 | x1, x2,..., xm)

=
P(1 | x1, x2,..., xm)
1−P(1 | x1, x2,..., xm)

= x1w1 +w2x2 +...+wmxm + b

Odds ratio

Linear model
+∞

-∞

+∞

0

odds ratio

Where is the dividing line
between class 1 and
class 0 being selected?

€

P(1 | x1,x2,...,xm)
1− P(1 | x1,x2,...,xm)

x1w1 +w2x2 +...+wmxm + b

10/20/16	

7	

Odds ratio

Does this suggest another transformation?

€

P(1 | x1,x2,...,xm)
1− P(1 | x1,x2,...,xm)

€

P(1 | x1,x2,...,xm) >1− P(1 | x1,x2,...,xm)

€

P(1 | x1,x2,...,xm) > P(0 | x1,x2,...,xm)

0 1 2 3 4 5 6 7 8 9 ….

odds ratio

We’re trying to find some transformation that transforms
the odds ratio to a number that is -∞ to +∞

0 1 2 3 4 5 6 7 8 9 ….

Log odds (logit function)

Linear regression
+∞

-∞

x1w1 +w2x2 +...+wmxm + b

+∞

-∞

odds ratio

€

log
P(1 | x1,x2,...,xm)

1− P(1 | x1,x2,...,xm)

How do we get the probability of
an example?

=

Log odds (logit function)

log P(1 | x1, x2,..., xm)
1−P(1 | x1, x2,..., xm)

= w1x2 +w2x2 +...+wmxm + b

P(1 | x1, x2,..., xm)
1−P(1 | x1, x2,..., xm)

= ew1x2+w2x2+...+wmxm+b

P(1 | x1, x2,..., xm) = (1−P(1 | x1, x2,..., xm))e
w1x2+w2x2+...+wmxm+b

P(1 | x1, x2,..., xm) =
1

1+ e−(w1x2+w2x2+...+wmxm+b)

…
anyone
recognize
this?

10/20/16	

8	

Logistic function

logistic = 1
1+ e−x

Logistic regression

How would we classify examples once we had a trained
model?

If the sum > 0 then p(1)/p(0) > 1, so positive

if the sum < 0 then p(1)/p(0) < 1, so negative

Still a linear classifier (decision boundary is a line)

log P(1 | x1, x2,..., xm)
1−P(1 | x1, x2,..., xm)

= w1x2 +w2x2 +...+wmxm + b

Training logistic regression models

How should we learn the parameters for logistic
regression (i.e. the w’s and b)?

log P(1 | x1, x2,..., xm)
1−P(1 | x1, x2,..., xm)

= w1x2 +w2x2 +...+wmxm + b

P(1 | x1, x2,..., xm) =
1

1+ e−(w1x2+w2x2+...+wmxm+b)

parameters

MLE logistic regression

log- likelihood = log(p(xi))
i=1

n

∑

= log 1
1+ e−yi (w1x2+w2x2+...+wmxm+b)
"

#
$

%

&
'

i=1

n

∑

= − log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑

assume labels 1, -1

Find the parameters that maximize the likelihood (or log-likelihood) of the data:

10/20/16	

9	

MLE logistic regression

log- likelihood = − log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑

We want to maximize, i.e.

MLE(data) = argmaxw,b log- likelihood(data)

= argmaxw,b − log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑

= argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑

Look familiar? Hint: anybody read the book?

MLE logistic regression

Surrogate loss functions:

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑

logistic regression: three views

€

log
P(1 | x1,x2,...,xm)

1− P(1 | x1,x2,...,xm)
= w0 + w1x2 + w2x2 + ...+ wmxm

€

P(1 | x1,x2,...,xm) =
1

1+ e−(w0 +w1x2 +w2x2 +...+wmxm)

linear classifier

conditional model
logistic

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑
linear model
minimizing logistic loss

Overfitting

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑

If we minimize this loss function, in practice, the results
aren’t great and we tend to overfit

Solution?

10/20/16	

10	

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑ +λregularizer(w,b)

or

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑ − log(p(w,b))

What are some of the regularizers we know?

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑ +λ w 2

L2 regularization:

Gaussian prior:

p(w,b) ~

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑ +λ w 2

L2 regularization:

Gaussian prior:

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑ +
1
2σ 2 w 2

λ =
1
2σ 2Does theλmake sense?

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑ +λ w 2

L2 regularization:

Gaussian prior:

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑ +
1
2σ 2 w 2

λ =
1
2σ 2

10/20/16	

11	

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑ +λ w

L1 regularization:

Laplacian prior:

p(w,b) ~

Regularization/prior

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑ +λ w

L1 regularization:

Laplacian prior:

argminw,b log(1+ e−yi (w1x2+w2x2+...+wmxm+b))
i=1

n

∑ +
1
σ

w

λ =
1
2σ 2

L1 vs. L2

L1 = Laplacian prior L2 = Gaussian prior

Logistic regression

Why is it called logistic regression?
It is a classifier??

log P(1 | x1, x2,..., xm)
1−P(1 | x1, x2,..., xm)

= w1x2 +w2x2 +...+wmxm + b

10/20/16	

12	

A digression:
regression vs. classification

Raw data Label

0

0

1

1

0

extract
features

f1, f2, f3, …, fn

f1, f2, f3, …, fn

f1, f2, f3, …, fn

f1, f2, f3, …, fn

f1, f2, f3, …, fn

features Label

classification:
discrete (some finite
set of labels)

regression: real
value

linear regression

Given some points, find the line
that best fits/explains the data

Our model is a line, i.e. we’re
assuming a linear relationship
between the feature and the
label value

How can we find this line?

f1

response
(y)

h(y) = w1x1 + b

Linear regression

Learn a line h that minimizes some loss/error
function:

€

error(h) = ?

feature (x)

response
(y)

Sum of the individual errors:

€

error(h) = yi − h(fi)i=1

n
∑

0/1 loss!

Error minimization

How do we find the minimum of an equation?

Take the derivative, set to 0 and solve (going to be a min
or a max)

Any problems here?

Ideas?

€

error(h) = yi − h(fi)i=1

n
∑

10/20/16	

13	

Linear regression

€

error(h) = (yi − h(fi))
2

i=1

n
∑

feature

response €

error(h) = yi − h(fi)i=1

n
∑

squared error is convex!

Linear regression

Learn a line h that minimizes an error
function:

€

error(h) = (yi − h(fi))
2

i=1

n
∑

error(h) = (yi − (w1x1 +w0))
2

i=1

n
∑

in the case of a 2d line:

function for a line
feature

response

Linear regression

We’d like to minimize the error
Find w1 and w0 such that the error is minimized

We can solve this in closed form
€

error(h) = (yi − (w1 f i + w0))
2

i=1

n
∑

Multiple linear regression

If we have m features, then we have a line in m dimensions

€

h(f) = w0 + w1 f1 + w2 f2 + ...+ wm fm

weights

10/20/16	

14	

Multiple linear regression

We can still calculate the squared error like before

€

error(h) = (yi − (w0 + w1 f1 + w2 f2 + ...+ wm fm))
2

i=1

n
∑

Still can solve this exactly!

€

h(f) = w0 + w1 f1 + w2 f2 + ...+ wm fm

Logistic function

logistic = 1
1+ e−x

Logistic regression

Find the best fit of the data based on a logistic

Basic steps for probabilistic modeling

Which model do we use,
i.e. how do we calculate
p(feature, label)?

How do train the model,
i.e. how to we we
estimate the probabilities
for the model?

How do we deal with
overfitting?

Probabilistic models

Step 1: pick a model

Step 2: figure out how to
estimate the probabilities for
the model

Step 3 (optional): deal with
overfitting

10/20/16	

15	

Probabilistic models summarized

Two classification models:
! Naïve Bayes (models joint distribution)
! Logistic Regression (models conditional distribution)

!  In practice this tends to work better if all you want to do is
classify

Priors/smoothing/regularization
!  Important for both models
!  In theory: allow us to impart some prior knowledge
!  In practice: avoids overfitting and often tune on

development data

