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Admin
[
Assignment 6

Office hours today:
0 2:30-3:15
11 4-4:45

PROBABILISTIC MODELS

Probabilistic Modeling Probabilistic models
j o

Probabilistic models define a probability distribution

over features and labels:
Model the data with a probabilistic

o model
«© obabilistc yellow, curved, no leaf, 60z, banana  mmp P’°b":"|'s'" =) ( 0.004
pi ilisti "~ model:
» models specifically, learn p(features, label) - 0.00002

yellow, curved, no leaf, 6oz, apple  EEP | pifeatures label
plfeatures, label) ——

training data

plfeatures, label) tells us how likely
these features and this example are

For each label, ask for the probability under the model
Pick the label with the highest probability
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Basic steps for probabilistic modeling

Step 1: pick a model

Step 2: figure out how to
estimate the probabilities for
the model

Step 3: (optional): deal with
overfitting

Probabilistic models

Which model do we use,
i.e. how do we calculate
p(feature, label)?

How do train the model,
i.e. how to we we
estimate the probabilities
for the model?

How do we deal with
overfitting?

Basic steps for probabilistic modeling

Step 1: pick a model

Step 2: figure out how to
estimate the probabilities for
the model

Step 3 (optional): deal with
overfitting

Probabilistic models

Which model do we use,
i.e. how do we calculate
p(feature, label)?

How do train the model,
i.e. how to we we
estimate the probabilities
for the model2

How do we deal with
overfitting?

Some maths

p(features,label) = p(x,,x,,...,X,,y)

= pOP(x X0 X,, 1Y)

=p(Mpx 1y)p(xy,..s X, 1y, %)

= p(Npx 1y)p(x, 1 y,x)p(Xs5.0s%, 1 9,X,,X,)

2120) | FEARE
=

Step 1: pick a model

p(features,label) = p(y)l_[ px; 1y, x50 x,,)

So, far we have made NO assumptions about the data

P(x, 1Y, X, Xy X, )

How many entries would the probability distribution table
have if we tried to represent all possible values (e.g. for

the wine data set)?
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Full distribution tables 27000

1 377095191112430363743256235982084151527023162702352987080237879
4460004651996019099530984538652557892546513204107022110253564658647431585227076599373340842842
7224200122818782600729310826170431944842663920777841 120981
81962552 44627 16097132874749204352087401101862
6908423275017246052311 14554 4112569473438
61912152968484743444067412041 3718694217015502200 381224299258743537536161041593
7017909041 1 37557541434487608
8248369941993802415197514510125127043829087280919538476302857811854024099958895964192277601255
36049115624034999471441609057308424293139621 30129447956002 0738 3920 10322
* 346598038953069042980174009801732521069130797124201 02183. 3710885
819563173700074380516741118913461750148452176798. 3731274221220 1 4839257
13553347¢ 259107956729143121 8. 2928
9799168140474938421574351580260381151068286406789730483829220346042775765507377656754750702714
* 4662263, 08978593689047063428548:!
609066484950801276175461457216176955575199211750751406777510449672859082255854777 1447242334900
764026321760892113552561241194! 8 19 40
5673807775018914703049621 50 0715, 1517 62510
3200928396048072: 124¢ 1 351174415329737479300
Wine problem: 8995583051888413533479846411 3737 1123263282186611
: 9156018580839820741704606832124388152026099584696588161375826382921029547343888832163627122302
; L 9212297953848683554835357106034077891774170263636562027269554375177807413134551018100094688094
= all pOSSIblE combination of features 0781122057380335371124632958916237089580476224595091825301636909236240671411644331656159828058
3720783439888562390892028440902553829376

o o - = O o

- — O O O o

O O © © o o

- o0 = ©o = O
*

m ~7000 binary features

u Sample space size: 2790 Any problems with this?

Full distribution tables Step 1: pick a model

p(features,label) = p(y)l_[ px; 1y, x50 x,,)
1

So, far we have made NO assumptions about the data

Model selection involves making assumptions about the data

o o - = O o

- — O O O o

O O © © o o

- o = ©o = ©o
*

We did this before, e.g. assume the data is linearly separable

- Storing a table of that size is impossible These assumptions allow us to represent the data more compactly

- How are we supposed to learn/estimate each entry in and to estimate the parameters of the model
the table?
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An aside: independence independent or dependent?

Two variables are independent if one has nothing to do Catching a cold and having a cat-allergy
with the other

For two independent variables, knowing the value of one Miles per gallon and driving habits

does not change the probability distribution of the other
variable (or the probability of any individual event) . X .
the result of the toss of a coin is independent of a roll of a die Height and longevity of life
the price of tea in England is independent of the whether or not

you pass ML

Independent variables Independent variables

How does independence affect our probability
equations/properties?

If A and B are independent (written ...) If A and B are independent (written ...)
P(AB) =2 P(A,B) = P(A)P(B)
P(A|B) =2 P(A|B) = P(A) How does independence help us?
P(B|A) =2 P(B|A) = P(B)
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Independent variables

If A and B are independent
P(A,B) = P(A)P(B)
P(A|B) = P(A)
P(B|A) = P(B)
Reduces the storage requirement for the distributions

Reduces the complexity of the distribution

Reduces the number of probabilities we need to estimate

Conditional Independence

Dependent events can become independent given certain other events
Examples,

height and length of life

“correlation” studies

u  size of your lawn and length of life

If A, B are conditionally independent given C
P(A,B|C) = P(A|C)P(B|C)
P(A|B,C) = P(A|C)
P(B|A,C) = P(B|C)
but P(A,B) # P(A)P(B)

Naive Bayes assumption

p(features,label) = p(y)Hp(x, [y, X0 X)

Jj=1
Px; 1y, x, Xy, %,) = p(x; 1 y)

What does this assume?

Naive Bayes assumption

p(features,label) = p(y)l_[ px; 1y, x50 x,,)
J=l
p(-x,' |y1x17x2,~-~axi_1)= P(xi Iy)
Assumes feature i is independent of the the other
features given the label (i.e. are conditionally

independent given the label)

For the wine problem?
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Naive Bayes assumption

p(x,' |y’x1’x2’~~ax,;|) = P(x,- Iy)

Assumes feature i is independent of the the other
features given the label

Assumes the probability of a word occurring in a review
is independent of the other words given the label

For example, the probability of “pinot” occurring is
independent of whether or not “wine” occurs given that
the review is about “chardonnay”

Is this assumption true?

Naive Bayes assumption

P 1 y,xp,%5500,x,) = p(x; 1Y)
For most applications, this is not true!

For example, the fact that “pinot” occurs will probably
make it more likely that “noir” occurs (or take a
compound phrase like “San Francisco”)

However, this is often a reasonable approximation:

P 1y, x, %, ,00,%,) = p(x; 1 y)

Naive Bayes model

p(features,label) = p(y)l_[p(xi [y,x5 X))
=l

naive bayes assumption

=] [Pt 1y

p(x;|y) is the probability of a particular feature value given the label

How do we model this?

- for binary features

- for discrete features, i.e. counts
- for real valued features

p(x|y)

Binary features:

7] if x;=1
! f ! biased coin toss!

x.ly)=
PO ly) 1-6, otherwise

Other features:

Could use a lookup table for each value, but doesn’t generalize well

Better, model as a distribution:

- gaussian (i.e. normal) distribution

- poisson distribution

- multinomial distribution (more on this later)
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Basic steps for probabilistic modeling

Step 1: pick a model

Step 2: figure out how to
estimate the probabilities for
the model

Step 3 (optional): deal with
overfitting

Probabilistic models

Which model do we use,
i.e. how do we calculate
p(feature, label)?

How do train the model,
i.e. how to we we
estimate the probabilities
for the model?

How do we deal with
overfitting?

Obtaining probabilities

8856050009

We've talked a lot about probabilities, but not where
they come from
How do we calculate p(x;|y) from training data?
What is the probability of surviving the titanic?
What is that any review is about Pinot Noir?
What is the probability that a particular review is about
Pinot Noir2

Obtaining probabilities

\‘6\0

probabilistic
model

N————

training data

p(y)
p(x1y)

p(y)ﬁ p(x;1y) p(x, 1y)
=l

p(x, 1y)

Estimating probabilities

What is the probability of a pinot noir review?

We don’t know!

We can estimate it based on data, though:

number of reviews labeled pinot noir

total number of reviews

This is called the maximum likelihood estimation. Why?




10/30/16

Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation picks the values for the
model parameters that maximize the likelihood of the
training data

You flip a coin 100 times. 60 times you get heads
and 40 times you get tails.

What is the MLE estimate for heads?

p(head) = 0.60 why?

Likelihood

The likelihood of a data set is the probability that a
particular model (i.e. a model and estimated
probabilities) assigns to the data

likelihood(data) = | | p,(x,)

i=l

for each example how probable is it under the model

the model parameters (e.g. probability of heads)

Likelihood

You flip a coin 100 times. 60 times you get heads and
40 times you get tails.

What is the likelihood of this data with © =p(head) = 0.6 2

likelihood(data) = | | p,(x,)

i=l

for each example how probable is it under the model

the model parameters (e.g. probability of heads)

Likelihood

You flip a coin 100 times. 60 times you get heads and
40 times you get tails.

What is the likelihood of this data with @ =p(head) = 0.6 2

likelihood(data) = | | p,(x,)

i=l
0.60%° * 0.404° = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with ptail) = 0.4
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MLE example

Can we do any better? likelihood(data) = H px,)
0.60%° * 0.404° = 5.908465121038621e-30
60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

What about p(head) = 0.52

MLE example

Can we do any better? likelihood(data):H p(x,)
0.60%° * 0.404° = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with ptail) = 0.4

0.50%° * 0.504° = 7.888609052210118e-31

60 heads with p(head) = 0.5 40 tails with ptail) = 0.5

MLE example

Can we do any better? likelihood(data) = H px,)
0.60%° * 0.404° = 5.908465121038621e-30
60 heads with p(head) = 0.6 40 tails with p(tail) = 0.4

What about p(head) = 0.72

MLE example

Can we do any better? likelihood(data):H p(x,)
0.60%° * 0.404° = 5.908465121038621e-30

60 heads with p(head) = 0.6 40 tails with ptail) = 0.4

0.70%° * 0.304° = 6.176359828759916e-31

60 heads with p(head) = 0.7 40 tails with ptail) = 0.3
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MLE Example

Likelihood

o
001 006 011 016 021 026 031 036 0.41 0.46 051 0.56 061 066 071 076 081 086 091 096

p(heads)

Maximum Likelihood Estimation (MLE)

The maximum likelihood estimate for a model
parameter is the one that maximize the likelihood of
the training data

MLE =argmax, [ [ py(x)

i=1

Often easier to work with log-likelihood:

MLE = argmaxglog(n DPo(X,)
i=l Why is this ok?

= argmax, Elog(p(x, )
i=1

Calculating MLE

The maximum likelihood estimate for a model
parameter is the one that maximize the likelihood of
the training data

MLE = argmax, Elog(p(x, )

i=1

Given some training data, how do we calculate the MLE2

You flip a coin 100 times. 60 times you get heads and 40 times you get tails.

Calculating MLE

You flip a coin 100 times. 60 times you get heads and 40 times you get tails.

log-likelihood = . log(p(x,))

i=1
=601log(p(heads))+40log(p(tails))

=601log(0)+40log(1-6)

MLE = argmax,, 601og(6) + 40log(1 - 0)

How do we find the max?

10
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Calculating MLE

You flip a coin 100 times. 60 times you get heads and 40 times you get tails.

d
—601log(8)+40log(1-6)=0
20 2(0) g(1-6)

0 _40 _,
0 1-0
40 _60
-0 0
406 = 606080
1008 = 60
LU
100 R

Calculating MLE

You flip @ coin n times. o times you get heads and b times you get tails.

d
—alog(8)+blog(1-6)=0
20 2(6) 2(1-6)

MLE estimation for NB

] [pCi1y)

\‘6\0

» probabilistic p(y) p(_xi |y)

model

training data

What are the MLE estimates
for these?

Maximum likelihood estimates

count(y) number of examples with label
py)=—""—
total number of examples
count(x, y) number of examples with the label with feature
x ly)s—077
p( ! y) Count(y) number of examples with label

What does training a NB model then involve?
How difficult is this to calculate?

11
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Naive Bayes classification

NB Model
yellow, curved, no leaf, 60z, banana » P, » 0.004

N——

PO [ptx 1)

J=1

Given an unlabeled example: yellow, curved, no leaf, 6oz predict the label

How do we use a probabilistic model for classification/prediction?

Probabilistic models

probabilistic

yellow, curved, no leaf, 60z, banana ‘
model: pick largest

yellow, curved, no leaf, 6oz, apple q plfeatures, label)

PO [

=l

m

label = ArgMaX P()’)HP(X,’ 1)

jel

oL

To classify with a model, we're given an example and we obtain
the probability

Generative Story

We can also ask how a given model would generate a document
This is the “generative story” for a model
Looking at the generative story can help understand the model

We also can use generative stories to help develop a model

o

NB generative story

O EEAR)

=l

What is the generative story for the NB model?

12
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o1

NB generative story

OIIEED)
=1
1. Pick a label according to p(y)
roll a biased, num_labels-sided die
2. For each feature:

Flip a biased coin:
if heads, include the feature

if tails, don't include the feature

What about for modeling wine reviews2

NB decision boundary

label = argmax ., PO)] [ P05, 1)

el

What does the decision boundary for
NB look like if the features are binary?

Some maths

label =log(argmax ¢ ,,,,. O] [ (3, 19)
J=l

= argmax ,,,, 1og(p(»)+ Y, log(p(x; 1))

i=l

= argmax ., log(p(y)+ 3, % log(p(x, 1 7))+ X log(1- p(x; 1))

i=1

0 fx=1

1-6, otherwise

plx;1y)= {

Some more maths

labels = argmax ¢, log(p(y)) + Ex, log(p(x; 1 y))+ X, log(1- p(x, 1 y))

i=l

= argmax ¢, log(p() + Y, % log(p(x; 1)+ (1= x)log(1- p(x; 1Y)
= (because x,; are binary)

=argmax c,,,,,10g(p(»)+ Y, %, log(p(x, 1¥)) - x,log(1 - p(x, 1 y)+ log(1 - p(x, 1)
a

p(x;1y)
1

log(1- p(x, |
-p(x,ly))+ og(l-p(x;1y)

= aIgmﬁXya(.ml"g(P(y)) + E x; log

i=l

13
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And...

p(x;1y)

labels = argmax . log(p(y))+ Ex, log( ) +log(1-p(x;1y)
= 1-p(x;1y)

L-p(x;1y)

i=l

\ . |
- argmax ., Jog(p(y)+ 3 log(1 - pix, 1)+ S 1og(M)
i=l

What does this look like?

And...

p(x;1y)

labels = argmax ., Jog(p(y))+ Ex, log( ]+ log(1-p(x; ly)
il 1-p(x;1y)

n n |
=argmax ¢, log(p(y)) + E log(1-p(x; 1y)+ Ex, log(%)

i=1

+
What are the weights2

Linear model !l

NB as a linear model

How likely this feature is to
be 1 given the label

W, = log| 2LV
' 1-p(x1y)

How likely this feature is to
be 0 given the label

- low weights indicate there isn't much difference
- larger weights (positive or negative) indicate feature is important

Maximum likelihood estimation
Intuitive

Sets the probabilities so as to maximize the
probability of the training data

Problems?
Overfitting!
Amount of data
m particularly problematic for rare events

Is our training data representative

14
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Basic steps for probabilistic modeling

Step 1: pick a model

Step 2: figure out how to
estimate the probabilities for
the model

Step 3 (optional): deal with
overfitting

Probabilistic models

Which model do we use,
i.e. how do we calculate
p(feature, label)?

How do train the model,
i.e. how to we we
estimate the probabilities
for the model?

How do we deal with
overfitting?

Coin experiment

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS

AVERAGE CONVERGES TO EXPECTED VALUE OF 3.5

teone
R e e e e e e e

S I £rE I A A A B o I e e ]

4 A R -

2 Wﬁw B BB S5 BRI S R e e 1

2 A, I S PRI IR B LR T B BRI O

1L b e s S S b 8 S N S S B b S S 4t |

o 100 200 200 400 500 600 700 800 00 1000

Roll
PLOT  ++ + Outcome

fverage

Back to parasitic gaps

Say the actual probability is 1/100,000

We don’t know this, though, so we're estimating it from a small
data set of 10K sentences

What is the probability that we have a parasitic gap sentence in
our sample?

15
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Back to parasitic gaps

p(not_parasitic) = 0.99999

p(not_parasitic)'09%° = 0.905 is the probability of us NOT finding
one

Then probability of us finding one is ~10%

0 90% of the time we won't find one and won’t know anything
(or assume p(parasitic) = 0)

o 10% of the time we would find one and incorrectly assume the
probability is 1/10,000 (10 times too large!)

Solutions?

Priors

Coinl data: 3 Heads and 1 Tail

Coin2 data: 30 Heads and 10 tails
Coin3 data: 2 Tails

Coind data: 497 Heads and 503 tails

If someone asked you what the probability of heads
was for each of these coins, what would you say?

16



