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REGULARIZATION 

David Kauchak 
CS 451 – Fall 2013 

Admin 

Assignment 5 

Math so far… Model-based machine learning 

1.  pick a model 

2.  pick a criteria to optimize (aka objective function) 

3.  develop a learning algorithm 
 

1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[ ]
i=1

n

∑ Find w and b that 
minimize the 0/1 loss 

0 = b+ wj f jj=1

m
∑
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Model-based machine learning 

1.  pick a model 

2.  pick a criteria to optimize (aka objective function) 

3.  develop a learning algorithm 
 

exp(−yi (w ⋅ xi + b))
i=1

n

∑

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ Find w and b that 
minimize the 
surrogate loss 

use a convex surrogate 
loss function 

0 = b+ wj f jj=1

m
∑

Finding the minimum 

You’re blindfolded, but you can see out of the bottom of the 
blindfold to the ground right by your feet.  I drop you off 
somewhere and tell you that you’re in a convex shaped valley 
and escape is at the bottom/minimum.  How do you get out? 

Gradient descent 

¤  pick a starting point (w) 
¤  repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

wj = wj −η
d
dwj

loss(w)

Some maths 

=
d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑d
dwj

loss

= exp(−yi (w ⋅ xi + b))
d
dwji=1

n

∑ − yi (w ⋅ xi + b)

= −yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑
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Gradient descent 

¤  pick a starting point (w) 
¤  repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

What is this doing? 

Perceptron learning algorithm! 

repeat until convergence (or for some # of iterations): 

   for each training example (f1, f2, …, fm, label): 

       
 

      if prediction * label ≤ 0:  // they don’t agree 

         for each wj: 

           wj = wj + fj*label 

         b = b + label 

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or 

where  c =η exp(−yi (w ⋅ xi + b))

The constant 

c =η exp(−yi (w ⋅ xi + b))

When is this large/small? 

prediction label learning rate 

The constant 

c =η exp(−yi (w ⋅ xi + b))

prediction label 

If they’re the same sign, as the 
predicted gets larger there update 
gets smaller 
 
If they’re different, the more 
different they are, the bigger the 
update 
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One concern 

What is this calculated on? 
Is this what we want to optimize? 

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑

w 

loss 

Perceptron learning algorithm! 

repeat until convergence (or for some # of iterations): 

   for each training example (f1, f2, …, fm, label): 

       
 

      if prediction * label ≤ 0:  // they don’t agree 

         for each wj: 

           wj = wj + fj*label 

         b = b + label 

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or 

where  c =η exp(−yi (w ⋅ xi + b))

Note: for gradient descent, we always update 
 

One concern 

w 

loss 

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑

We’re calculating this on the training set 
 
We still need to be careful about 
overfitting! 
 
The min w,b on the training set is 
generally NOT the min for the test set 

How did we deal with this for the perceptron algorithm? 

Overfitting revisited: regularization 

A regularizer is an additional criteria to the loss function 
to make sure that we don’t overfit 
 
It’s called a regularizer since it tries to keep the 
parameters more normal/regular 
 
It is a bias on the model forces the learning to prefer 
certain types of weights over others 

argminw,b loss(yy ')+λ  regularizer(w,b)
i=1

n

∑
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Regularizers 

0 = b+ wj f jj=1

n
∑

Should we allow all possible weights? 
 
Any preferences? 
 
What makes for a “simpler” model for a 
linear model? 

Regularizers 

Generally, we don’t want huge weights 
 
If weights are large, a small change in a feature can result in a 
large change in the prediction 
 
Also gives too much weight to any one feature 
 
Might also prefer weights of 0 for features that aren’t useful 

How do we encourage small weights? or penalize large weights? 

0 = b+ wj f jj=1

n
∑

Regularizers 

How do we encourage small weights? or penalize large weights? 

argminw,b loss(yy ')+λ  regularizer(w,b)
i=1

n

∑

0 = b+ wj f jj=1

n
∑

Common regularizers 

What’s the difference between these? 

r(w,b) = wj
wj

∑sum of the weights 

sum of the squared weights r(w,b) = wj
2

wj

∑
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Common regularizers 

Squared weights penalizes large values more 
Sum of weights will penalize small values more 

sum of the weights 

sum of the squared weights 

r(w,b) = wj
wj

∑

r(w,b) = wj
2

wj

∑

p-norm 

sum of the weights (1-norm) 

sum of the squared weights  
(2-norm) 

p-norm r(w,b) = wj
p

wj

∑p = w p

Smaller values of p (p < 2) encourage sparser vectors 
Larger values of p discourage large weights more 

r(w,b) = wj
wj

∑

r(w,b) = wj
2

wj

∑

p-norms visualized 

w1 

w2 

lines indicate penalty = 1 

For example, if w1 = 0.5 

p w2 

1 0.5 

1.5 0.75 

2 0.87 

3 0.95 

∞ 1 

p-norms visualized 

all p-norms penalize larger 
weights 
 
p < 2 tends to create sparse 
(i.e. lots of 0 weights) 
 
p > 2 tends to like similar 
weights 
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Model-based machine learning 

1.  pick a model 

2.  pick a criteria to optimize (aka objective function) 

3.  develop a learning algorithm 
 

0 = b+ wj f jj=1

n
∑

loss(yy ')
i=1

n

∑ +λregularizer(w)

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w) Find w and b 
that minimize 

Minimizing with a regularizer 

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w)

argminw,b loss(yy ')
i=1

n

∑

We know how to solve convex minimization problems using 
gradient descent: 

If we can ensure that the loss + regularizer is convex then we 
could still use gradient descent: 

make convex 

Convexity revisited 

One definition: The line segment between any 
two points on the function is above the function 

Mathematically, f is convex if for all x1, x2: 

f (tx1 + (1− t)x2 ) ≤ tf (x1)+ (1− t) f (x2 )   ∀ 0 < t <1

the value of the function 
at some point between 
x1 and x2 

the value at some point 
on the line segment 
between  x1 and x2 

Adding convex functions 

Claim: If f and g are convex functions then so is the 
function z=f+g 

f (tx1 + (1− t)x2 ) ≤ tf (x1)+ (1− t) f (x2 )   ∀ 0 < t <1
Mathematically, f is convex if for all x1, x2: 

Prove: 
z(tx1 + (1− t)x2 ) ≤ tz(x1)+ (1− t)z(x2 )   ∀ 0 < t <1
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Adding convex functions 

z(tx1 + (1− t)x2 ) = f (tx1 + (1− t)x2 )+ g(tx1 + (1− t)x2 )

tz(x1)+ (1− t)z(x2 ) = tf (x1)+ tg(x1)+ (1− t) f (x2 )+ (1− t)g(x2 )
= tf (x1)+ (1− t) f (x2 )+ tg(x1)+ (1− t)g(x2 )

f (tx1 + (1− t)x2 ) ≤ tf (x1)+ (1− t) f (x2 )
g(tx1 + (1− t)x2 ) ≤ tg(x1)+ (1− t)g(x2 )

Then, given that: 

By definition of the sum of two functions: 

We know: 

f (tx1 + (1− t)x2 )+ g(tx1 + (1− t)x2 ) ≤ tf (x1)+ (1− t) f (x2 )+ tg(x1)+ (1− t)g(x2 )

z(tx1 + (1− t)x2 ) ≤ tz(x1)+ (1− t)z(x2 )So: 

Minimizing with a regularizer 

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w)

argminw,b loss(yy ')
i=1

n

∑

We know how to solve convex minimization problems using 
gradient descent: 

If we can ensure that the loss + regularizer is convex then we 
could still use gradient descent: 

convex as long as both loss and regularizer are convex 

p-norms are convex 

r(w,b) = wj
p

wj

∑p = w p

p-norms are convex for p >= 1 

Model-based machine learning 

1.  pick a model 

2.  pick a criteria to optimize (aka objective function) 

3.  develop a learning algorithm 
 

0 = b+ wj f jj=1

n
∑

exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2 Find w and b 

that minimize 
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Our optimization criterion 

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2

Loss function: penalizes 
examples where the prediction 
is different than the label 

Regularizer: penalizes large 
weights 

Key: this function is convex allowing us to use gradient descent 

Gradient descent 

¤  pick a starting point (w) 
¤  repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

wi = wi −η
d
dwi

(loss(w)+ regularizer(w,b))

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2

Some more maths 

d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2d

dwj

objective =

= − yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑ +λwj

…
 (some math happens) 

Gradient descent 

¤  pick a starting point (w) 
¤  repeat until loss doesn’t decrease in all dimensions: 

n  pick a dimension 
n  move a small amount in that dimension towards decreasing loss (using 

the derivative) 

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑ −ηλwj

wi = wi −η
d
dwi

(loss(w)+ regularizer(w,b))
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The update 

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλwj

regularization direction to 
update 

learning rate 

constant: how far from wrong 

What effect does the regularizer have? 

The update 

If wj is positive, reduces wj 
If wj is negative, increases wj 

moves wj towards 0 

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλwj

regularization direction to 
update 

learning rate 

constant: how far from wrong 

L1 regularization 

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ + w

d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑ +λ wd
dwj

objective =

= − yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑ +λsign(wj )

L1 regularization 

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλsign(wj )

regularization direction to 
update 

learning rate 

constant: how far from wrong 

What effect does the regularizer have? 
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L1 regularization 

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλsign(wj )

regularization direction to 
update 

learning rate 

constant: how far from wrong 

If wj is positive, reduces by a constant 
If wj is negative, increases by a constant 

moves wj towards 0 
regardless of  magnitude 

Regularization with p-norms 

L1: 
 
 
L2: 
 
 
Lp: 

wj = wj +η(loss_ correction−λsign(wj ))

wj = wj +η(loss_ correction−λwj )

wj = wj +η(loss_ correction−λcwj
p−1)

How do higher order norms affect the weights? 

Regularizers summarized 

L1 is popular because it tends to result in sparse solutions 
(i.e. lots of zero weights) 

However, it is not differentiable, so it only works for gradient 
descent solvers 
 

L2 is also popular because for some loss functions, it can 
be solved directly (no gradient descent required, though 
often iterative solvers still) 
 
Lp is less popular since they don’t tend to shrink the 
weights enough 

The other loss functions 

wj = wj +ηyixijc
Without regularization, the generic update is: 

where 

c = exp(−yi (w ⋅ xi + b))

c =1[yy ' <1]

exponential 

hinge loss 

squared error wj = wj +η(yi − (w ⋅ xi + b)xij )
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Many tools support these different combinations 

Look at scikit learning package: 
 
http://scikit-learn.org/stable/modules/sgd.html 
 

Common names 

(Ordinary) Least squares: squared loss 
 
Ridge regression: squared loss with L2 regularization 
 
Lasso regression: squared loss with L1 regularization 
 
Elastic regression: squared loss with L1 AND L2 
regularization 
 
Logistic regression: logistic loss 
 
 

Real results 


