
10/25/13	

1	

REGULARIZATION

David Kauchak
CS 451 – Fall 2013

Admin

Assignment 5

Math so far… Model-based machine learning

1.  pick a model

2.  pick a criteria to optimize (aka objective function)

3.  develop a learning algorithm

1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑

argminw,b 1 yi (w ⋅ xi + b) ≤ 0[]
i=1

n

∑ Find w and b that
minimize the 0/1 loss

0 = b+ wj f jj=1

m
∑

10/25/13	

2	

Model-based machine learning

1.  pick a model

2.  pick a criteria to optimize (aka objective function)

3.  develop a learning algorithm

exp(−yi (w ⋅ xi + b))
i=1

n

∑

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ Find w and b that
minimize the
surrogate loss

use a convex surrogate
loss function

0 = b+ wj f jj=1

m
∑

Finding the minimum

You’re blindfolded, but you can see out of the bottom of the
blindfold to the ground right by your feet. I drop you off
somewhere and tell you that you’re in a convex shaped valley
and escape is at the bottom/minimum. How do you get out?

Gradient descent

¤  pick a starting point (w)
¤  repeat until loss doesn’t decrease in all dimensions:

n  pick a dimension
n  move a small amount in that dimension towards decreasing loss (using

the derivative)

wj = wj −η
d
dwj

loss(w)

Some maths

=
d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑d
dwj

loss

= exp(−yi (w ⋅ xi + b))
d
dwji=1

n

∑ − yi (w ⋅ xi + b)

= −yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

10/25/13	

3	

Gradient descent

¤  pick a starting point (w)
¤  repeat until loss doesn’t decrease in all dimensions:

n  pick a dimension
n  move a small amount in that dimension towards decreasing loss (using

the derivative)

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑

What is this doing?

Perceptron learning algorithm!

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fm, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wj:

 wj = wj + fj*label

 b = b + label

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or

where c =η exp(−yi (w ⋅ xi + b))

The constant

c =η exp(−yi (w ⋅ xi + b))

When is this large/small?

prediction label learning rate

The constant

c =η exp(−yi (w ⋅ xi + b))

prediction label

If they’re the same sign, as the
predicted gets larger there update
gets smaller

If they’re different, the more
different they are, the bigger the
update

10/25/13	

4	

One concern

What is this calculated on?
Is this what we want to optimize?

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑

w

loss

Perceptron learning algorithm!

repeat until convergence (or for some # of iterations):

 for each training example (f1, f2, …, fm, label):

 if prediction * label ≤ 0: // they don’t agree

 for each wj:

 wj = wj + fj*label

 b = b + label

prediction = b+ wj f jj=1

m
∑

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))

wj = wj + xij yic
or

where c =η exp(−yi (w ⋅ xi + b))

Note: for gradient descent, we always update

One concern

w

loss

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑

We’re calculating this on the training set

We still need to be careful about
overfitting!

The min w,b on the training set is
generally NOT the min for the test set

How did we deal with this for the perceptron algorithm?

Overfitting revisited: regularization

A regularizer is an additional criteria to the loss function
to make sure that we don’t overfit

It’s called a regularizer since it tries to keep the
parameters more normal/regular

It is a bias on the model forces the learning to prefer
certain types of weights over others

argminw,b loss(yy ')+λ regularizer(w,b)
i=1

n

∑

10/25/13	

5	

Regularizers

0 = b+ wj f jj=1

n
∑

Should we allow all possible weights?

Any preferences?

What makes for a “simpler” model for a
linear model?

Regularizers

Generally, we don’t want huge weights

If weights are large, a small change in a feature can result in a
large change in the prediction

Also gives too much weight to any one feature

Might also prefer weights of 0 for features that aren’t useful

How do we encourage small weights? or penalize large weights?

0 = b+ wj f jj=1

n
∑

Regularizers

How do we encourage small weights? or penalize large weights?

argminw,b loss(yy ')+λ regularizer(w,b)
i=1

n

∑

0 = b+ wj f jj=1

n
∑

Common regularizers

What’s the difference between these?

r(w,b) = wj
wj

∑sum of the weights

sum of the squared weights r(w,b) = wj
2

wj

∑

10/25/13	

6	

Common regularizers

Squared weights penalizes large values more
Sum of weights will penalize small values more

sum of the weights

sum of the squared weights

r(w,b) = wj
wj

∑

r(w,b) = wj
2

wj

∑

p-norm

sum of the weights (1-norm)

sum of the squared weights
(2-norm)

p-norm r(w,b) = wj
p

wj

∑p = w p

Smaller values of p (p < 2) encourage sparser vectors
Larger values of p discourage large weights more

r(w,b) = wj
wj

∑

r(w,b) = wj
2

wj

∑

p-norms visualized

w1

w2

lines indicate penalty = 1

For example, if w1 = 0.5

p w2

1 0.5

1.5 0.75

2 0.87

3 0.95

∞ 1

p-norms visualized

all p-norms penalize larger
weights

p < 2 tends to create sparse
(i.e. lots of 0 weights)

p > 2 tends to like similar
weights

10/25/13	

7	

Model-based machine learning

1.  pick a model

2.  pick a criteria to optimize (aka objective function)

3.  develop a learning algorithm

0 = b+ wj f jj=1

n
∑

loss(yy ')
i=1

n

∑ +λregularizer(w)

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w) Find w and b
that minimize

Minimizing with a regularizer

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w)

argminw,b loss(yy ')
i=1

n

∑

We know how to solve convex minimization problems using
gradient descent:

If we can ensure that the loss + regularizer is convex then we
could still use gradient descent:

make convex

Convexity revisited

One definition: The line segment between any
two points on the function is above the function

Mathematically, f is convex if for all x1, x2:

f (tx1 + (1− t)x2) ≤ tf (x1)+ (1− t) f (x2) ∀ 0 < t <1

the value of the function
at some point between
x1 and x2

the value at some point
on the line segment
between x1 and x2

Adding convex functions

Claim: If f and g are convex functions then so is the
function z=f+g

f (tx1 + (1− t)x2) ≤ tf (x1)+ (1− t) f (x2) ∀ 0 < t <1
Mathematically, f is convex if for all x1, x2:

Prove:
z(tx1 + (1− t)x2) ≤ tz(x1)+ (1− t)z(x2) ∀ 0 < t <1

10/25/13	

8	

Adding convex functions

z(tx1 + (1− t)x2) = f (tx1 + (1− t)x2)+ g(tx1 + (1− t)x2)

tz(x1)+ (1− t)z(x2) = tf (x1)+ tg(x1)+ (1− t) f (x2)+ (1− t)g(x2)
= tf (x1)+ (1− t) f (x2)+ tg(x1)+ (1− t)g(x2)

f (tx1 + (1− t)x2) ≤ tf (x1)+ (1− t) f (x2)
g(tx1 + (1− t)x2) ≤ tg(x1)+ (1− t)g(x2)

Then, given that:

By definition of the sum of two functions:

We know:

f (tx1 + (1− t)x2)+ g(tx1 + (1− t)x2) ≤ tf (x1)+ (1− t) f (x2)+ tg(x1)+ (1− t)g(x2)

z(tx1 + (1− t)x2) ≤ tz(x1)+ (1− t)z(x2)So:

Minimizing with a regularizer

argminw,b loss(yy ')
i=1

n

∑ +λregularizer(w)

argminw,b loss(yy ')
i=1

n

∑

We know how to solve convex minimization problems using
gradient descent:

If we can ensure that the loss + regularizer is convex then we
could still use gradient descent:

convex as long as both loss and regularizer are convex

p-norms are convex

r(w,b) = wj
p

wj

∑p = w p

p-norms are convex for p >= 1

Model-based machine learning

1.  pick a model

2.  pick a criteria to optimize (aka objective function)

3.  develop a learning algorithm

0 = b+ wj f jj=1

n
∑

exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2 Find w and b

that minimize

10/25/13	

9	

Our optimization criterion

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2

Loss function: penalizes
examples where the prediction
is different than the label

Regularizer: penalizes large
weights

Key: this function is convex allowing us to use gradient descent

Gradient descent

¤  pick a starting point (w)
¤  repeat until loss doesn’t decrease in all dimensions:

n  pick a dimension
n  move a small amount in that dimension towards decreasing loss (using

the derivative)

wi = wi −η
d
dwi

(loss(w)+ regularizer(w,b))

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2

Some more maths

d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑ +
λ
2
w 2d

dwj

objective =

= − yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑ +λwj

…
 (some math happens)

Gradient descent

¤  pick a starting point (w)
¤  repeat until loss doesn’t decrease in all dimensions:

n  pick a dimension
n  move a small amount in that dimension towards decreasing loss (using

the derivative)

wj = wj +η yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑ −ηλwj

wi = wi −η
d
dwi

(loss(w)+ regularizer(w,b))

10/25/13	

10	

The update

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλwj

regularization direction to
update

learning rate

constant: how far from wrong

What effect does the regularizer have?

The update

If wj is positive, reduces wj
If wj is negative, increases wj

moves wj towards 0

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλwj

regularization direction to
update

learning rate

constant: how far from wrong

L1 regularization

argminw,b exp(−yi (w ⋅ xi + b))
i=1

n

∑ + w

d
dwj

exp(−yi (w ⋅ xi + b))
i=1

n

∑ +λ wd
dwj

objective =

= − yixij exp(−yi (w ⋅ xi + b))
i=1

n

∑ +λsign(wj)

L1 regularization

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλsign(wj)

regularization direction to
update

learning rate

constant: how far from wrong

What effect does the regularizer have?

10/25/13	

11	

L1 regularization

wj = wj +ηyixij exp(−yi (w ⋅ xi + b))−ηλsign(wj)

regularization direction to
update

learning rate

constant: how far from wrong

If wj is positive, reduces by a constant
If wj is negative, increases by a constant

moves wj towards 0
regardless of magnitude

Regularization with p-norms

L1:

L2:

Lp:

wj = wj +η(loss_ correction−λsign(wj))

wj = wj +η(loss_ correction−λwj)

wj = wj +η(loss_ correction−λcwj
p−1)

How do higher order norms affect the weights?

Regularizers summarized

L1 is popular because it tends to result in sparse solutions
(i.e. lots of zero weights)

However, it is not differentiable, so it only works for gradient
descent solvers

L2 is also popular because for some loss functions, it can
be solved directly (no gradient descent required, though
often iterative solvers still)

Lp is less popular since they don’t tend to shrink the
weights enough

The other loss functions

wj = wj +ηyixijc
Without regularization, the generic update is:

where

c = exp(−yi (w ⋅ xi + b))

c =1[yy ' <1]

exponential

hinge loss

squared error wj = wj +η(yi − (w ⋅ xi + b)xij)

10/25/13	

12	

Many tools support these different combinations

Look at scikit learning package:

http://scikit-learn.org/stable/modules/sgd.html

Common names

(Ordinary) Least squares: squared loss

Ridge regression: squared loss with L2 regularization

Lasso regression: squared loss with L1 regularization

Elastic regression: squared loss with L1 AND L2
regularization

Logistic regression: logistic loss

Real results

