(CS451 - Assignment 4
k-NN and Feature Preprocessing

Due: Sunday, October 6 by 11:59pm

For this assignment, we're going to add a third classifier to our arsenal (k-NN) and also implement
a few feature preprocessing techniques so that we can start to play with some more interested data
sets, in particular, data sets that use real/continuous features!

As always, make sure to read through the entire handout before starting. You may (and I would
strongly encourage you to) work with a partner on this assignment. If you do, you must both be
there whenever you are working on the project. If you’d like a partner for the lab, e-mail me asap
and I can try and pair people up.

1 High-level Requirements
For this assignment, you are going to be implementing three main things:

e the k nearest neighbor (k-NN) classifier
e feature normalization (mean centering and variance scaling)
e example length normalization

Like the previous assignments, we’re also going to then run a few experiments on these and, now
that we can do statistical tests, we can be more confident with our comparisons :)

2 Starter Code

I have again included some starter code at:
http://www.cs.middlebury.edu/~dkauchak/classes/cs451/assignments/assign4/assign4-starter.tar.gz
This code includes some new classes/interfaces and some changes to some previous ones:
- Added PerceptronClassifier and AveragePerceptronClassifier classes. These will NOT
be included in the starter code if you try and download it before Tuesday since people are

still working on the last assignment. On Tuesday, I will update the starter code to include
these.

You are welcome to use your own if you’d like, but I'm providing these for those of you who
weren’t that comfortable with your versions :)

- I have created a new package ml.data and moved all of the data processing classes in there.

- Added DataPreprocessor interface. This defines the interface for any of our data prepro-
cessing approaches.

- Added CrossValidationSet class. This class is generated from a DataSet by calling
getCrossValidationSet. The class represents an n-fold splitting of the data, as talked about
in class. By asking for each split, you can calculate cross validation scores.

- Added DataSetSplit to represent a train/test split of the data. This replaces the old (read,
bad) way of doing it where we (I) represented a train/test split by an array of DataSet.

- DataSet has been updated to include this new split behavior, the new cross validation func-
tionality, a new constructor, addData methods for adding additional data to a data set (useful
with new constructor), and a few other minor changes.

- Example class has been updated to include a setFeature function that will allow you to

update the value of a feature.

To make life a little easier (and to show you guys how useful docstrings are) I've generated the
html documentation from the starter code and made it available at:

http://www.cs.middlebury.edu/~dkauchak/classes/cs451/assignments/assign4/doc/

3 k-NN Classifier

To round out our classification approaches, implement the k-NN classifier. In particular:
e Implement a class called KNNClassifier that implements the Classifier interface. The
train method should be very easy. For the distance measure, use euclidean distance.
e The class should have an empty constructor and by default k£ should be 3.

e The class should include a setK method that allows you to update the k value.

4 Data Pre-processing

So far, we’ve only been playing with boolean features. Generally, as long as there aren’t too many
of them, boolean features don’t require a lot of pre-processing. Right now, the perceptron and
k-NN classifiers will both work on real-valued features, however, if you run them, you’ll notice that
their performance is pretty bad. The problem is that we need to normalize the feature values.

Implement the following:

e A class called ExampleNormalizer that implements the DataPreprocessor interface. This
class should normalize each example so that its length is 1.

e A class called FeatureNormalizer that implements the DataPreprocessor interface. For
each feature (e.g. age) this class should:

— recenter all of the feature values for that one feature so that the mean is 0 and then

— rescale all of the features values for that one feature so that the standard deviation is 1

In the notes, this is referred to as “centering” and “variance scaling”.

5 Data

At:
http://www.cs.middlebury.edu/~dkauchak/classes/cs451/assignments/assign4/data/

I have included one new data set: “titanic-train.real.csv”. This is almost the real data set. This
data set includes the same examples as “titanic-train.perc.csv”, in the same order, but includes two
additional features and there are now non-binary features.

6 Experiments

Answer the following questions and put them in a file called experiments (pick some reasonable
file type). Explicitly label each answer with the question number.

1. Calculate the performance of the perceptron classifier on the 10-fold cross validation of the
data (i.e. you should have 10 numbers) with the AveragePerceptronClassifier on the old
binary data, i.e. “titanic-train.perc.csv”.

Also include the average of the 10 folds.
2. Calculate the accuracy on the 10 folds on the new non-binary data, i.e. “titanic-train.real.csv”.

You should notice a pretty big difference here. Why do you think there is such a big difference
(you don’t have to write your answer)?

3. Repeat experiments 1 and 2 for your new k-NN classifier.

4. Now, generate a table of scores (a spreadsheet would work well) with 10-fold scores on the
following algorithm variants:

e k-NN with length normalization

e k-NN with feature normalization

e k-NN with length and feature normalization
e perceptron with length normalization

e perceptron with feature normalization

e perceptron with length and feature normalization

This should be a table with 60 numbers!

5. Pick a few (say 4-5) of these results (including the earlier results) and calculate their t-test
score to figure out if the differences are significant. Pick a couple the experimental results are
close and a couple where they’re further apart. Were there any surprises for you?

I’d suggest just using Excel/open office to calculate these, though you can use whatever you’d
like. If you use these the ttest function is what you want to use. The first two parameters
are the two data sets, the third parameter (tails) should be 2 (two-tailed test) and the fourth
parameter (type) should be 1 (paired t-test).

6. Write a short (3-4 sentence) paragraph summarizing your results.

7 Hints/Advice

LOOKS LIKE COMPUTERS | [WELL, AT LEAST HOMANS T MADE A PYTHON SCRIPT
WILL BEAT HOMANS AT | | ARE.‘STILL BETTER AT, U, THAT GENERATES THOUSANDS
GO PRETTY SOON. | | NG UP WITH REASSURING WSEDIWD PARABLES
UC;M- PARABLES ABOUT THINGS ’ T
OF THE BIG ONES, UNDERSTAND A SONNET

2

e For the k-NN classifier the hardest part is not calculating the distance, but finding the k
closest. The challenge is keeping track of both the distance to an example AND the example
itself so that when you do some sort of sorting of the data based on distance, you can recover
the examples too. My suggestion is to make a helper class that stores an Example along with

http://www.xked.com/1263/

the distance from that example to the example you’re trying to classify. This class should
implement the Comparable interface. The comparison can then just compare the distances.
This will allow you to use built-in sorting or even built in priority queues to pick the k closest.
There are other ways of doing this, of course,

e For the two feature pre-processing techniques think about what information, if any, you need
to store from train preprocessing to use during test preprocessing.

e For the feature normalization, make sure to do recentering before you do variance scaling.

e For feature normalization you don’t need to create a new data set or new examples. Mutate
(i.e. change) the existing examples using the setFeature method.

e When running experiments, be careful with running the preprocessing techniques. They
will manipulate the examples themselves and almost all of the splitting methods (e.g. cross
validation methods) simply share the underlying examples. So, once you apply normalization
techniques, in most circumstances, all of the data will be changed.

8 Extra Credit

For those who would like to experiment (and push themselves) a bit more (and of course, get a bit
of extra credit) you can try out some of these extra credit options. If you try out these options,
include an extra file called extra.txt that describes what extra credit you did.

e The easiest way to implement k-NN is to calculate all of the distances, sort them and then
take the k smallest. A better way is to only keep track of the k smallest as you go with
something like a priority queue. This saves on memory and in many situations also the
run-time. Implement your k-NN classifier this way.

e Add another feature normalizer. One option would be to do max value scaling, rather than
variance scaling. If you go this route, also include some experimentation.

9 When You’re Done

Make sure that your code compiles, that your files are named as specified and that you have followed
the specifications exactly (i.e. method names, number of parameters, etc.).

Create a directory with your last name, followed by the assignment number, for example, for this
assignment mine would be kauchak4. If you worked with a partner, put both last names.

Inside this directory, create a code directory and copy all of your code into this directory, main-
taining the package structure.

Finally, also include your experiments file with the answers from Section 6.

tar then gzip this folder and submit that file on the submission page on the course web page.

Commenting and code style

Your code should be commented appropriately (though you don’t need to go overboard). The most
important things:

e Your name (or names) and the assignment number should be at the top of each file

e Each class and method should have an appropriate doctsring

e If anything is complicated, it should include some comments.
There are many possible ways to approach this problem, which makes code style and comments

very important here so that I can understand what you did. For this reason, you will lose points
for poorly commented or poorly organized code.

BuT FIEST]'lL
JUST CHECK mYy
EMAIL rEAL

['M Golng To LATouT

A BRoCHIRE, 3semp somE
INVOrCES, START ov MY

-, NMUVEL, Do
\§ MY (AvaDRY,
S: (fo Te THE
GaoDbyrel,
Ctean THE
\ APARTMENT,

Go Ferz

b A4 Kuw,

ETC £€7¢,

ET (g'w_'fzﬁ.," ' e

S S o i '_E;"o |

UGH! wif 1s MY HEH HEH HEH... WHY? 1 ?0
FANTASY BASERAL TEAM Tw ! TTER THIS To MYSELF,
go BAD? T!ME To FIND ' MA- MAYRE wiki pep) A
Some NEW | FEN HAS THE ANSweR...

http://www.entrepreneursolo.com/entrepreneur-thoughts/more-on-procrastination-is-there-an-app-for-that

