
1

Faster TF-IDF!

David Kauchak
cs458

Fall 2012
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt

Administrative

n  Videos
n  Homework 2
n  Assignment 2
n  CS lunch tomorrow

TF-IDF recap

-  Represent the queries as vectors
-  Represent the documents as vectors
-  proximity = similarity of vectors

What do the entries in the vector represent in
the tf-idf scheme?

TF-IDF recap: document vectors

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

A document is represented by a vector of
weights for each word

2

TF-IDF recap: document vectors

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

!

w
t ,d

= tft,d " log(N /dft)
One option for this weighting is TF-IDF:

TF-IDF recap: similarity

Given weight vectors, how do we determine
similarity (i.e. ranking)?

TF-IDF recap: similarity

∑∑
∑

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(










Dot product Unit vectors

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Outline

Calculating tf-idf score

Faster ranking

Static quality scores

Impact ordering

Cluster pruning

3

The basic idea

Index-time:
calculate weight (e.g. TF-IDF) vectors for all
documents

Query time:
calculate weight vector for query

calculate similarity (e.g. cosine) between query and
all documents

sort by similarity and return top K

Calculating cosine similarity

!

cos(! q ,
!
d) =

qidii=1

V
"

qi
2

i=1

V
" di

2

i=1

V
"

weights

doc

query

How do we do this?

Calculating cosine similarity

Traverse entries calculating the
product
n  Accumulate the vector lengths

and divide at the end

n  How can we do it faster if we
have a sparse representation?

!

cos(! q ,
!
d) =

qidii=1

V
"

qi
2

i=1

V
" di

2

i=1

V
"

weights

doc

query

Calculating cosine tf-idf from index
What should we store in the index?

How do we construct the index?

How do we calculate the document
ranking?

w1

…

w2

w3

index

!

cos(! q ,
!
d) =

! q
! q

•

!
d
!
d

=
qidii=1

V
"

qi
2

i=1

V
" di

2

i=1

V
"!

w
t ,d

= tft,d " log(N /dft)

4

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Index construction: collect docIDs
Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction: sort dictionary

sort based on terms

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction: create postings list

create postings lists
from identical entries

word 1

word 2

word n

…

!

w
t ,d

= tft,d " log(N /dft)

Do we have all the information we need?

Obtaining tf-idf weights

Store the tf initially in the index

In addition, store the number of documents the term
occurs in in the index (length of the postings list)

How do we get the idfs?

n  We can either compute these on the fly using the number of
documents in each term

n  We can make another pass through the index and update
the weights for each entry

Pros and cons of each approach?

5

An aside: speed matters!
Urs Holzle, Google’s chief engineer:

-  When Google search queries slow down a mere 400 milliseconds,

traffic drops 0.44%.

-  80% of people will click away from an Internet video if it stalls
loading.

-  When car comparison pricing site Edmunds.com reduced loading
time from 9 to 1.4 seconds, pageviews per session went up 17%
and ad revenue went up 3%.

-  When Shopzilla dropped load times from 7 seconds to 2 seconds,
pageviews went up 25% and revenue increased between 7% and
12%.

http://articles.businessinsider.com/2012-01-09/tech/30607322_1_super-fast-fiber-
optic-network-google-services-loading

Do we have everything we need?

Still need the document lengths
n  Store these in a separate data structure
n  Make another pass through the data and update

the weights

Benefits/drawbacks?

cos(!q,
!
d) =

!q
!q
•

!
d
!
d
=

qidii=1

V
!
qi
2

i=1

V
! di

2

i=1

V
!

Computing cosine scores
Similar to the merge operation

Accumulate scores for each document

float scores[N] = 0

for each query term t

calculate wt,q
for each entry in t’s postings list: docID, wt,d

scores[docID] += wt,q * wt,d

return top k components of scores

Computing cosine scores

What are the inefficiencies here?
n  Only want the scores for the top k but are calculating all the scores
n  Sort to obtain top k?

float scores[N] = 0

for each query term t

calculate wt,q
for each entry in t’s postings list: docID, wt,d

scores[docID] += wt,q * wt,d

return top k components of scores

6

Outline

Calculating tf-idf score

Faster ranking

Static quality scores

Impact ordering

Cluster pruning

Key challenges for speedup

Ranked search is more computationally expensive

float scores[N] = 0

for each query term t

calculate wt,q
for each entry in t’s postings list: docID, wt,d

scores[docID] += wt,q * wt,d

return top k components of scores

Why is this more expensive than boolean?

Key challenges for speedup

Ranked search is more computationally expensive

float scores[N] = 0

for each query term t

calculate wt,q
for each entry in t’s postings list: docID, wt,d

scores[docID] += wt,q * wt,d

return top k components of scores sort?

more expensive

Key challenges for speedup

query

document

boolean

query

document

ranked

Intersection strictly intersection?

7

Key challenges for speedup

query

document

boolean

query

document

ranked

Intersection

soft-intersection: only requires
one or more words to overlap
Many, many more documents!

Speeding up the “merge”

Any simplifying assumptions to make this faster?

Queries are short!

Assume query terms only occur once

Assume no weighting on query terms

float scores[N] = 0

for each query term t

calculate wt,q
for each entry in t’s postings list: docID, wt,d

scores[docID] += wt,q * wt,d

return top k components of scores

Speeding up the “merge”
float scores[N] = 0

for each query term t

calculate wt,q
for each entry in t’s postings list: docID, wt,d

scores[docID] += wt,q * wt,d

return top k components of scores

float scores[N] = 0

for each query term t

for each entry in t’s postings list: docID, wt,d
scores[docID] += wt,d

return top k components of scores

Assume query
terms only occur
once

Assume no
weighting on query
terms

Selecting top K
We could sort the scores and then pick the top K

What is the runtime of this approach?

O(N log N)

Can we do better?

Use a heap (i.e. priority queue)

n  Build a heap out of the scores
n  Get the top K scores from the heap
n  Running time?

O(N + K log N)

For N=1M, K=100, this is about 10% of the cost of sorting

1

.9 .3

.8 .3

.1

.1

8

Inexact top K

What if we don’t return exactly the top K, but almost the
top K (i.e. a mostly similar set)?

User has a task and a query formulation

Cosine is a proxy for matching this task/query

If we get a list of K docs “close” to the top K by cosine
measure, should still be ok

Current approach

Documents

Score documents

Pick top K

Approximate approach
Documents

Select A candidates
 K < A << N

Pick top K in A

Score documents in A

Exact vs. approximate
Depending on how A is selected and how large A is, can get
different results

Can think of it as pruning the initial set of docs

How might we pick A?

Exact

Approximate

9

Exact vs. approximate

How might we pick A (subset of all documents) so as to
get as close as possible to the original ranking?

cos(!q,
!
d) = qidii=1

V
!

Documents with more than one query term

Terms with high IDF (prune postings lists to
consider)

Documents with the highest weights

Docs must contain multiple query terms

Right now, we consider any document with at least one
query term in it

For multi-term queries, only compute scores for docs
containing several of the query terms

n  Say, at least 3 out of 4 or 2 or more
n  Imposes a “soft conjunction” on queries seen on web search

engines (early Google)

Implementation?

Just a slight modification of “merge” procedure

Multiple query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128

32

Scores only computed for 8, 16 and 32.

If we required all but 1 term be there, which docs would
we keep?

Multiple query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128

32

All the others! (1, 2, 3, 4, 5, 13, 21, 34, 64, 128)

How many documents have we “pruned” or ignored?

10

High-idf query terms only

For a query such as catcher in the rye

Only accumulate scores from catcher and rye

Intuition: in and the contribute little to the scores and don’t alter
rank-ordering much

Benefit:

n  Postings of low-idf terms have many docs → these (many) docs get
eliminated from A

Can we calculate this efficiently from the index?

High scoring docs: champion lists

Precompute for each dictionary term the r docs of
highest weight in the term’s postings

n  Call this the champion list for a term
n  (aka fancy list or top docs for a term)

Can we do this at query time?

Brutus

Caesar 1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

Antony 3 4 8 16 32 64 128

Implementation details…

How can Champion Lists be implemented in an
inverted index? How do we modify the data
structure?

Brutus

Caesar 1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

Antony 3 4 8 16 32 64 128

Champion lists

At query time, only compute scores for docs in the
champion list of some query term

n  Pick the K top-scoring docs from amongst these

Are we guaranteed to always get K documents?

Brutus

Caesar

Antony 8 16 128

8 32 128

1 16 128

11

High and low lists

For each term, we maintain two postings lists called
high and low

n  Think of high as the champion list

When traversing postings on a query, only traverse high
lists first

n  If we get more than K docs, select the top K and stop
n  Else proceed to get docs from the low lists

A way to segment the index into two tiers

Tiered indexes

Break postings up into a hierarchy of lists
n  Most important
n  …
n  Least important

Inverted index thus broken up into tiers of decreasing
importance

At query time use top tier unless it fails to yield K docs

n  If so drop to lower tiers

Example tiered index Quick review

Rather than selecting the best K scores from all N
documents

n  Initially filter the documents to a smaller set
n  Select the K best scores from this smaller set

Methods for selecting this smaller set
n  Documents with more than one query term
n  Terms with high IDF
n  Documents with the highest weights

12

Outline

Calculating tf-idf score

Faster ranking

Static quality scores

Impact ordering

Cluster pruning

Static quality scores
We want top-ranking documents to be both relevant and
authoritative

my dog

query: dog

Which will our current approach prefer?

Static quality scores
We want top-ranking documents to be both relevant and
authoritative
Cosine score models relevance but not authority

Authority is typically a query-independent property of a document

What are some examples of authority signals?

n  Wikipedia among websites
n  Articles in certain newspapers
n  A paper with many citations
n  Many diggs, Y!buzzes or del.icio.us marks
n  Lots of inlinks
n  Pagerank

Modeling authority

Assign to each document a query-independent quality
score in [0,1] denoted g(d)

A quantity like the number of citations is scaled into [0,1]

Google PageRank

13

Net score

We want a total score that combines cosine relevance
and authority

How can we do this?

addition: net-score(q,d) = g(d) + cosine(q,d)

can use some other linear combination than an equal weighting

Any function of the two “signals” of user happiness

Net score
Now we want the top K docs by net score

What does this change in our indexing and query algorithms?

Easy to implement:
similar to incorporating document length normalization

Top K by net score – fast methods
Order all postings by g(d)… does it change our merge/
traversal algorithms?

Key: this is still a common ordering for all postings

Brutus

Caesar

Antony 1 2

3 1

3 2

2

g(1) = 0.5, g(2) = .25, g(3) = 1

Why order postings by g(d)?
Under g(d)-ordering, top-scoring docs likely to appear early in
postings traversal

In time-bound applications (say, we have to return whatever search
results we can in 50 ms), this allows us to stop postings traversal

Brutus

Caesar

Antony 1 2

3 1

3 2

2

g(1) = 0.5, g(2) = .25, g(3) = 1

14

Champion lists in g(d)-ordering

We can still use the notion of champion lists…

Combine champion lists with g(d)-ordering

Maintain for each term a champion list of the r docs
with highest g(d) + tf-idftd

Seek top-K results from only the docs in these
champion lists

Discussion

n  Who should be held responsible when a program
generates undesirable data outside control of the
programmer?

n  Does removal from the autocomplete feature, but
not the general search results, count as
censorship?

n  How much power should Google have to censor
content?

