
1

Index Construction!

David Kauchak
cs458

Fall 2012
adapted from:

http://www.stanford.edu/class/cs276/handouts/lecture4-indexconstruction.ppt

Administrative

n  Homework 1?
n  Homework 2 out soon
n  Issues with assignment 1?
n  Talks Thursday
n  videos?

Chinese Google trends

Play with it at some point…

Many terms peak:
-  Mitt Romney
-  Michael Jackson

Some terms are cyclical:
-  sunscreen
-  christmas

2

Stemming

Reduce terms to their “roots” before indexing

The term “stemming” is used since it is
accomplished mostly by chopping off part of the
suffix of the word

automate
automates
automatic
automation

run
runs
running

automat

run

Stemming example

Take a cours in inform retriev is more excit than most cours	

Taking a course in information retrieval is more exciting than most courses

http://maya.cs.depaul.edu/~classes/ds575/porter.html
or use the class from assign1 to try some examples out

Porter’s algorithm (1980)

Most common algorithm for stemming English
n  Results suggest it’s at least as good as other

stemming options

Multiple sequential phases of reductions using
rules, e.g.

n  sses → ss

n  ies → i

n  ational → ate
n  tional → tion

http://tartarus.org/~martin/PorterStemmer/

Lemmatization
Reduce inflectional/variant forms to base form

Stemming is an approximation for lemmatization

Lemmatization implies doing “proper” reduction to
dictionary headword form
e.g.,

n  am, are, is → be

n  car, cars, car's, cars' → car

the boy's cars are different colors
the boy car be different color

3

What normalization techniques to use…

What is the size of the corpus?
n  small corpora often require more normalization

Depends on the users and the queries

Query suggestion (i.e. “did you mean”) can often
be used instead of normalization

Most major search engines do little to normalize
data except lowercasing and removing punctuation
(and not even these always)

Hardware basics

Many design decisions in information retrieval are
based on the characteristics of hardware

disk

main memory

cpu

Hardware basics

fast, particularly relative to
hard-drive access times

gigahertz processors

multi-core

64-bit for larger workable
address space

disk

main memory

cpu ?

Hardware basics

GBs to 100s of GBs for servers

main memory buses run at
hundreds of megahertz

~random access

disk

main memory

cpu

?

4

Hardware basics

No data is transferred from disk
while the disk head is being
positioned

Transferring one large chunk of
data from disk to memory is faster
than transferring many small
chunks

Disk I/O is block-based: Reading
and writing of entire blocks (as
opposed to smaller chunks).

Block sizes: 8KB to 256 KB.

disk

main memory

cpu

?

Hardware basics

A few TBs

average seek time 5 ms

transfer time per byte 0.02 µs

disk

main memory

cpu

?

RCV1: Our corpus for this lecture

As an example for applying scalable index construction
algorithms, we will use the Reuters RCV1 collection
This is one year of Reuters newswire (part of 1995 and 1996)
Still only a moderately sized data set

Reuters RCV1 statistics

statistic value
documents 800K
avg. # tokens per doc 200
terms 400K
non-positional postings 100M

5

Index construction

word 1

word 2

word n

documents

1

2

m

…
…

index

Input:
tokenized, normalized
documents

Output:
postings lists sorted by docID

How can we do this?

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Index construction:
collecting docIDs

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

now what?

running time?

Θ(tokens)

memory?

O(1)

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction:
sort dictionary

sort based on terms

and then?

running time?

Θ(T log T)

memory?

Θ(T)

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Index construction:
create postings list

create postings lists
from identical entries

word 1

word 2

word n

…

running time?

Θ(tokens)

What does this
imply about the

sorting algorithm?

6

Scaling index construction

In-memory index construction does not scale!

What is the major limiting step?

n  both the collecting document IDs and creating posting lists
require little memory since it’s just a linear traversal of the
data

n  sorting is memory intensive! Even in-place sorting
algorithms still require O(n) memory

Scaling index construction
In-memory index construction does not scale!
For RCV1:

statistic value
documents 800K
avg. # tokens per doc 200
terms 400K
non-positional postings 100M

How much memory is required?

Scaling index construction
In-memory index construction does not scale!
For RCV1:

statistic value
documents 800K
avg. # tokens per doc 200
terms 400K
non-positional postings 100M

What about for 10 years of news data?

Scaling index construction
In-memory index construction does not scale!
For RCV1:

statistic value
documents 800K
avg. # tokens per doc 200
terms 400K
non-positional postings 100M

What about for 300 billion web pages?

7

On-disk sorting
What are our options?

sort on-disk: keep all data on disk. When we need to access
entries, access entries

n  Random access on disk is slow……
Break up list into chunks. Sort chunks, then merge chunks (e.g.
unix “merge” function or mergesort)

split
sort

chunks
merge
chunks

On-disk sorting: splitting

split

Do this while processing

When we reach a particular size, start the sorting process

On-disk sorting: sorting chunks
Pick the chunk size so that we can sort the chunk in
memory

Generally, pick as large a chunk as possible while still
being able to sort in memory

sort
chunks

On-disk sorting

How can we do this?

merge
chunks

?

8

On-disk sorting

How can we do this so that it is time and memory efficient?

merge
chunks

? ?

Binary merges

Could do binary merges, with a merge tree
For n chunks, how many levels will there be?

n  log(n)

n-way merge
More efficient to do an n-way merge, where you are reading from
all blocks simultaneously

Providing you read decent-sized chunks of each block into
memory, you’re not killed by disk seeks

Only one level of merges!

Is it linear?

Another approach: SPIMI

Sorting can still be expensive
Is there any way to do the indexing without sorting?

-  Accumulate posting lists as they occur
-  When size gets too big, start a new chunk
-  Merge chunks at the end

9

Another approach

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1
I
did
enact
julius
caesar
was
killed
i’
the
capitol
brutus
me

1

1

1

1

1

1

1

1

1

1

1

1

Another approach
I
did
enact
julius
caesar
was
killed
i’
the
capitol
brutus
me
so
let
it
be
with
noble
…

1

1

1

1

1

1

1

1

1

1

1

1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

2

2

2

2

2

2

2

2

2

Another approach

word 1

word 2

word n

…

word 1

word 2

word n

…

…

When posting lists get to
large to fit in memory,
we write to disk and start
another one

The merge
word 1

word 2

word n

…

word 1

word 2

word m

…

word 1

word 2

word k

…

Running time?
n  linear in the sizes of the postings list being merged

As with merging sorted dictionary entries we can either do
pairwise binary tree type merging or do an n-way merge

10

Distributed indexing

For web-scale indexing we must use a distributed
computing cluster

Individual machines are fault-prone

n  Can unpredictably slow down or fail

How do we exploit such a pool of machines?

Google data centers
Google data centers mainly contain commodity machines

Data centers are distributed around the world

Estimates:
-  2011: a total of 1 million servers, 3 million processors
-  Google says: In planning 1 million – 10 million machines
-  Google installs 100,000 servers each quarter

n  Based on expenditures of 200–250 million dollars per year
n  This would be 10% of the computing capacity of the world!?!

-  0.01% of the total worldwide electricity

Fault tolerance

Hardware failures

What happens when you have 1 million servers?
Hardware is always failing!

http://labs.google.com/papers/disk_failures.pdf

>30% chance of failure

within 5 years

