Index Construction

David Kauchak
cs458
Fall 2012

adapted from:
pt

Administrative

= Homework 1?

= Homework 2 out soon

= |ssues with assignment 1?
= Talks Thursday

= videos?

Chinese

English Spanish Fronch | Chinese - dotocted Engish | Spanish Arablc

SRR ENEREEEERENOES Rk, X | Sharapova now living in Florida, the southeastern United States.

Google trends

Play with it at some point...

Many terms peak:
Mitt Romney
Michael Jackson

Some terms are cyclical:
sunscreen
christmas

Stemming

Reduce terms to their “roots” before indexing

The term “stemming” is used since it is

accomplished mostly by chopping off part of the
suffix of the word

automate

automates :> automat
automatic

automation

run

runs I:> run

running

Stemming example

Taking a course in information retrieval is more exciting than most courses

Take a cours in inform retriev is more excit than most cours

http://maya.cs.depaul.edu/~classes/ds575/porter.html
or use the class from assign1 to try some examples out

Porter’s algorithm (1980)

Most common algorithm for stemming English

= Results suggest it’s at least as good as other
stemming options

Multiple sequential phases of reductions using
rules, e.g.

= S5es — Ss

= jes — i

= ational — ate
= tional — tion

http://tartarus.org/~martin/PorterStemmer/

Lemmatization

Reduce inflectional/variant forms to base form
Stemming is an approximation for lemmatization

Lemmatization implies doing “proper” reduction to
dictionary headword form

e.g.,

= am, are, is — be

= car, cars, car's, cars'— car

the boy's cars are different colors

What normalization techniques to use...
]

What is the size of the corpus?
= small corpora often require more normalization

Depends on the users and the queries

Query suggestion (i.e. “did you mean”) can often
be used instead of normalization

Most major search engines do little to normalize
data except lowercasing and removing punctuation
(and not even these always)

Hardware basics

Many design decisions in information retrieval are
based on the characteristics of hardware

A
cpu

I main memory I

Hardware basics

ﬁ 2 fast, particularly relative to

eul s hard-drive access times
Il

e — ,

multi-core

64-bit for larger workable
address space

gigahertz processors

Hardware basics

ﬁ GBs to 100s of GBs for servers
cpu
2 main memory buses run at
mammemory | | ¢ hundreds of megahertz
e ——
~random access

Hardware basics

No data is transferred from disk
while the disk head is being

-’ positioned
Transferring one large chunk of
data from disk to memory is faster
than transferring many small

=)
chunks
S
? Disk I/0 is block-based: Reading
and writing of entire blocks (as

opposed to smaller chunks).

Block sizes: 8KB to 256 KB.

Hardware basics

—’ A few TBs

cpu

=)
transfer time per byte 0.02 ys
e)7

average seek time 5 ms

RCV1: Our corpus for this lecture

As an example for applying scalable index construction
algorithms, we will use the Reuters RCV1 collection

This is one year of Reuters newswire (part of 1995 and 1996)
Still only a moderately sized data set

Extreme conditions create rare Antarctic clouds
Tue Aug 1. 2006 3:20am ET

Email This Articke | Print This Articke | Reprints
SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds !
caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on
Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian
meteorological base at Mawson Station on July 25.

Reuters RCV1 statistics

statistic value
documents 800K
avg. # tokens per doc 200

terms 400K
non-positional postings 100M

Index construction

documents index

oo

oooo

1 |oo=
o=

oo

(o]

woran [

word1 [T
2 [EE== wordz [

Input:
tokenized, normalized
documents

Output:
postings lists sorted by docID

How can we do this?

Index construction:
collecting doclDs

Term Doc #
Doc 1 - i
enact 1
) R Julius ' running time?
| did enact Julius gaesar i 9
Caesar | was killed o ! ©(tokens)
i' the Capitol; tho b
Brutus killed me. oot . memory?
killed 1
mm) - : o)
let 2
Doc 2 be :
‘with 2
So let it be with caosar 2 now what?
Caesar. The noble ot :
Brutus hath told you ot H
e u 2
Caesar was ambitious cansar :
o 2
ambitious 2

Index construction:
sort dictionary

Term Doc #
| 1

did
enact
julius
caesar

was
killed
M

the
capitol
brutus
killed
me

so

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

sort based on terms

=)

NN NRNNRNNRNNRNNRNNN A S aaasasasa

Term
ambitious
be

brutus
brutus
capitol
caesar
caesar
caesar
did

enact
hath

running time?
O(T log T)

memory?
o(T)

and then?

Index construction:
create postings list

Term Doc#
ambitious 2

capitol 1
caesar 1
2 .)
caosar 2| create postings lists g1 [P

from identical entries
word2 [P

=)

wordn [~

running time? What does this
imply about the

O(tokens) sorting algorithm?

Scaling index construction
[—————

In-memory index construction does not scale!

What is the major limiting step?
= both the collecting document IDs and creating posting lists
require little memory since it’ s just a linear traversal of the
data
= sorting is memory intensive! Even in-place sorting
algorithms still require O(n) memory

Scaling index construction
[—————

In-memory index construction does not scale!
For RCV1:

statistic value
documents 800K
avg. # tokens per doc 200

terms 400K
non-positional postings 100M

How much memory is required?

Scaling index construction

In-memory index construction does not scale!
For RCV1:

statistic value
documents 800K
avg. # tokens per doc 200

terms 400K
non-positional postings 100M

What about for 10 years of news data?

Scaling index construction
]

In-memory index construction does not scale!
For RCV1:

statistic value
documents 800K
avg. # tokens per doc 200

terms 400K
non-positional postings 100M

What about for 300 billion web pages?

On-disk sorting

What are our options?
sort on-disk: keep all data on disk. When we need to access
entries, access entries
= Random access on disk is slow......
Break up list into chunks. Sort chunks, then merge chunks (e.g.
unix “merge” function or mergesort)

' sort merge
split chunks chunks

o =) .)

On-disk sorting: splitting
Do this while processing

When we reach a particular size, start the sorting process

split

[]
m I
[]
]

On-disk sorting: sorting chunks

Pick the chunk size so that we can sort the chunk in
memory

Generally, pick as large a chunk as possible while still
being able to sort in memory

sort
chunks

=

On-disk sorting

How can we do this?

postings o

to be merged brutus d2

merge brutus d3

chunks brutus :i brutus :f caesar :‘1‘
caesar caesar caesar

with d4 killed d2 killed d2

with d4

I =) \ /

- é
disk

1 5

merged
postings|

On-disk sorting

How can we do this so that it is time and memory efficient?

merge
chunks

?2 =2

I

Binary merges
| —————]
Could do binary merges, with a merge tree
For n chunks, how many levels will there be?
= log(n)

n-way merge

More efficient to do an n-way merge, where you are reading from
all blocks simultaneously

Providing you read decent-sized chunks of each block into
memory, you're not killed by disk seeks

Only one level of merges!

Is it linear?

| |
0 o

Another approach: SPIMI

Sorting can still be expensive
Is there any way to do the indexing without sorting?

- Accumulate posting lists as they occur
- When size gets too big, start a new chunk
- Merge chunks at the end

Another approach

Doc 1

| did enact Julius
Caesar | was killed |:>
i' the Capitol;

Another approach

1
did
enact
Julius
Doc 2 caesar
me— s
So let it be with killod

Caesar. The noble I:D .
Brutus hath told you capitol

CLL DT EE T

i brutu: 2
Brutus killed me. Caesar was ambitious P
ot
it
be
with
noble
Another approach The merge
]
word1 [word1 [P
word1 [P word2 [P wora2 [P
woraz [
wordn [= 1 wordm [= 1~
wordn [~ When pos_ti_ng lists get to
large to fit in memory, % f
we write to disk and start
another one word 1 [T~
word1 [P wora2 [P
word2 [...
wordk [[
wodn [Running time?

= linear in the sizes of the postings list being merged

As with merging sorted dictionary entries we can either do
pairwise binary tree type merging or do an n-way merge

Distributed indexing

For web-scale indexing we must use a distributed
computing cluster

Individual machines are fault-prone
= Can unpredictably slow down or fail

How do we exploit such a pool of machines?

Google data centers

Google data centers mainly contain commodity machines
Data centers are distributed around the world

Estimates:
2011: a total of 1 million servers, 3 million processors
Google says: In planning 1 million — 10 million machines
Google installs 100,000 servers each quarter
= Based on expenditures of 200-250 million dollars per year
= This would be 10% of the computing capacity of the world!?!
0.01% of the total worldwide electricity

Fault tolerance
[

Hardware failures 2

AFR (%)

>30% chance of failure

within 5 years - -

Month
Month
1¥ear
2Year
3Year
avear
5 Year

Figure 2: Annualized failure rates broken down by age groups

http://labs.google.com/papers/disk_failures.pdf

What happens when you have 1 million servers?
Hardware is always failing!

10

