
1

Duplicate Detection!

David Kauchak

cs458
Fall 2012

adapted from:
http://www.stanford.edu/class/cs276/handouts/lecture14-Crawling.ppt

Administrative
n  Assignment 3
n  Midterm

n  posted online by tomorrow morning
n  take it by Tue. at midnight

n  1.5 hours

n  Don’t talk to anyone about it until after
Tuesday

Midterm review: general notes

n  We’ve covered a lot of material
n  Anything from lecture, readings, homeworks

and assignments is fair game

n  Today’s material NOT on the midterm

n  T/F, short answer, short work-through
problems

n  Some questions like homework, but also
“conceptual” questions

n  Won’t need calculator

Midterm review

n  indexes
n  representation
n  skip pointers

n  why we need an index

n  boolean index
n  merge operation

n  query optimization
n  phrase queries (query proximity)

2

Midterm review

n  index construction
n  implementing efficiently
n  sort-based

n  spimi
n  distributed index contruction

n  map reduce

n  dealing with data that refreshes frequently

Midterm review

n  index compression
n  dictionary compression

n  variable width entries

n  blocking

n  front-coding

n  postings list compression
n  gaps

n  gap encoding/compression

Midterm review

n  documents in the index

n  text preprocessing
n  tokenization

n  text normalization
n  stop lists

n  java regex

n  computer hardware basics

n  data set analysis
n  statistics

n  heaps’ law
n  zipf's law

Midterm review

n  ranked retrieval
n  vector space representation and retrieval
n  representing documents and queries as

vectors

n  cosine similarity measure
n  normalization/reweighting techniques

n  calculating similarities from index
n  Speeding up ranking calculations

n  approximate top K approaches (e.g. champion lists)

3

Midterm review

n  Evaluation
n  precision
n  recall

n  F1
n  11-point precision

n  MAP

n  Kappa statistic
n  A/B testing

Midterm review

n  snippet/summary generation

n  spelling correction
n  edit distance
n  word n-grams

n  jaccard coefficient

n  relevance feedback

Midterm review

n  web
n  basic web search engine
n  spam

n  estimating the size of the web (or the size of
a search engine's index)

Duplicate detection

http://rlv.zcache.com/cartoon_man_with_balled_fist_postcard-
p239288482636625726trdg_400.jpg

4

Duplicate documents

The web is full of duplicated content
n  Redundancy/mirroring

n  Copied content

Do we care?
How can we detect duplicates?

Many approaches…. Today:

Hashing
n  Hash each document

n  Compares hashes

n  For those that are equal, check if the content is equal

Key challenge: efficiency

dup() Are two documents duplicates?
(has to be fast!)

…

lo
ts

 o
f

d
o
cu

m
en

ts

Can’t do afford to do complete
pairwise comparisons.

Duplicate? Near duplicate documents

Many, many cases of near duplicates
n  E.g., last modified date the only difference between two copies of

a page

A good hashing function specifically tries not to have collisions

Ideas?

n  Locality sensitive hashing – (http://www.mit.edu/~andoni/LSH/)

n  Similarity – main challenge is efficiency!

5

Computing Similarity
We could use edit distance, but way too slow

What did we do for spelling correction?

compare word n-grams (shingles) overlap
n  a rose is a rose is a rose →

 a_rose_is_a

 rose_is_a_rose

 is_a_rose_is
 a_rose_is_a

Use Jaccard Coefficient to measure the similarity between
documents (A and B)/(A or B)

N-gram intersection

Computing exact set intersection of n-grams between all pairs
of documents is expensive/intractable

How did we solve the efficiency problem for spelling correction?

n  Indexed words by character n-grams

n  AND query of the character n-grams in our query word

Will this work for documents?

Number of word n-grams for a document is too large!

Efficient calculation of JC

Use a hash function that maps an
n-gram to a 64 bit number

Doc
A

n-grams

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

Doc
A

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

Jaccard
Coefficient

Efficient calculation of JC

Doc
A

n-grams

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

Doc
A

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

I’ve reduced the
storage. but
how can I tell if
they’re similar?

Use a hash function that maps an
n-gram to a 64 bit number

6

Efficient calculation of JC

Doc
A

n-grams

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

Doc
A

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

What if we just compared
smallest one of each?

Use a hash function that maps an
n-gram to a 64 bit number

Efficient calculation of JC

Doc
A

n-grams

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

Doc
A

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

-  Permute all 64 bit
numbers
-  Compare smallest values
-  Repeat some number of
times (say 200)

Use a hash function that maps an n-
gram to a 64 bit number

Efficient JC

Document 1

264

264

264

264

Start with 64-bit n-grams

Permute on the number line

with πi

Pick the min value

Test if Doc1 = Doc2

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

A B

7

Test if Doc1 = Doc2

Document 1 Document 2

264

264

264

264

264

264

264

264
A B

The minimum values after the permutations will be equal
with probability =
 Size_of_intersection / Size_of_union

Repeat

Document 1 Document 2

264

264

264

264

264

264

264

264
B A

- Repeat this, say 200 times, with different permutations
-  Measure the number of times they’re equal
-  This is a reasonable estimate for the JC

Putting it all together

Doc
A

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

64 bit #

…

For each document, precompute the 200
permuted, smallest numbers

200

Putting it all together

Doc
A …

These 200 64-bit numbers then represent the document
and can be used to calculate JC between any two docs

…

Doc
B

JC = proportion that are equal

compare

8

All signature pairs

Now we have an extremely efficient method for
estimating a Jaccard coefficient for a single pair of
documents.

But we still have to estimate N2 coefficients where
N is the number of web pages.

n  Still slow

Need to reduce the set of options

n  locality sensitive hashing (LSH)

n  sorting (Henzinger 2006)

Article discussion

Is it more relevant to know what your close friends are
searching for, or the majority of people worldwide?

How do companies balance out trying to provide the best
search results possible while trying to make the most money
possible? Are those goals aligned?

How would you know if a search engine is “impartial” i.e. that
they provide you the best results regardless of how it affects
them as a company?

http://www.youtube.com/watch?v=KNWuOJXP-R4

