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http://www.youtube.com/watch?v=4PcL6-mjRNk 

Local Search


CS151 
David Kauchak 

Fall 2010 

Some material borrowed from: 
Sara Owsley Sood and others 

Administrative 

  Assign 1 grading… 

  Assign 2 extended (now due Friday at 5pm) 
  try and finish at least alpha-beta (and ideally the 

heuristic) before Wed. 
  good job to those who have already started! 

  use this time to make better players… I want a 
good tournament  

  Will post Written 2 solutions 

  Look for Written 3 soon... 

N-Queens problem 
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N-Queens problem 

  What is the depth? 
  8 

  What is the branching factor? 
  ≤ 8 

  88 = 17 million nodes 

  Do we care about the path? 

  What do we really care about? 

Local search 

  So far: systematic exploration:  
  Explore full search space (possibly) using 

principled pruning (A*, . . . )  

  Best such algorithms (IDA*) can handle  
  10100 states ≈ 500 binary-valued variables  

(ballpark figures only!)  

  but. . . some real-world problem have 10,000 
to 100,000 variables 1030,000 states  

  We need a completely different approach:  
  Local Search Methods or  
  Iterative Improvement Methods  

Local search 

  Key difference: we don’t care about the path to 
the solution, only the solution itself! 

  Other similar problems? 
  sudoku 

  crossword puzzles 

  VLSI design 

  job scheduling 

  Airline fleet scheduling 
  http://www.innovativescheduling.com/company/

Publications/Papers.aspx 

  … 

Alternate Approach 

  Start with a random 
configuration 

  repeat 
  generate a set of “local” 

next states 

  move to one of these 
next states 

  How is this different? 
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Local search 

  Start with a random configuration 
  repeat 

  generate a set of “local” next states 
  move to one of these next states 

  Requirements: 
  ability to generate an initial, random guess 
  generate the set of next states that are “local” 
  criterion for evaluating what state to pick! 

Example: 4 Queens 

  State: 
  4 queens in 4 columns 

  Generating random state: 
  any configuration 

  any configuration without row conflicts? 

  Operations:  
  move queen in column  

  Goal test:  
  no attacks  

  Evaluation: 
  h(state) = number of attacks  

Local search 

  Start with a random configuration 
  repeat 

  generate a set of “local” next states 
  move to one of these next states 

Starting state and next states are generally 
constrained/specified by the problem 

Local search 

  Start with a random configuration 
  repeat 

  generate a set of “local” next states 
  move to one of these next states 

How should we pick the 
next state to go to? 
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Greedy: Hill-climbing search 

  Start with a random configuration 
  repeat 

  generate a set of “local” next states 
  move to one of these next states 

pick the best one 
according to our heuristic 

again, unlike A* and others, we don’t 
care about the path 

Hill-Climbing 

def hillClimbing(problem): 
   """ This function takes a problem specification and returns 
       a solution state which it finds via hill climbing """ 
   currentNode = makeNode(initialState(problem)) 
   while True: 
      nextNode = getHighestSuccessor(currentNode,problem) 
      if value(nextNode) <= value(currentNode): 
         return currentNode 
      currentNode = nextNode 

Example: n-queens 

3 steps! 

Graph coloring 

  What is the graph coloring problem? 
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Graph coloring 

  Given a graph, label the nodes of the graph with 
n colors such that no two nodes connected by an 
edge have the same color 

  Is this a hard problem? 
  NP-hard (NP-complete problem) 

  Applications 
  scheduling 

  sudoku 

Local search: graph 3-coloring 

  Initial state? 

  Next states? 

  Heuristic/evaluation measure? 

Example: Graph Coloring 

1.  Start with random coloring of nodes  

2.  Change color of one node to reduce # of 
conflicts  

3.  Repeat 2  

Eval: number of “conflicts”, 
pairs adjacent nodes with the 
same color: 

2 

Example: Graph Coloring 

1.  Start with random coloring of nodes  

2.  Change color of one node to reduce # of 
conflicts  

3.  Repeat 2  

Eval: number of “conflicts”, 
adjacent nodes with the 
same color: 

1 
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Example: Graph Coloring 

1.  Start with random coloring of nodes  

2.  Change color of one node to reduce # of 
conflicts  

3.  Repeat 2  

Eval: number of “conflicts”, 
adjacent nodes with the 
same color: 

Hill-climbing Search: 8-queens 
problem 

  h = number of pairs of queens that are attacking each other, either directly 
or indirectly  

  h = 17 for the above state 

Hill-climbing search: 8-queens 
problem 

After 5 moves, we’re here… now what? 

86% of the time, this happens 

Problems with hill-climbing 
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Hill-climbing Performance 

  Complete? 

  Optimal? 

  Time Complexity 

  Space Complexity 

Problems with hill-climbing 

Ideas? 

Idea 1: restart! 

  Random-restart hill climbing 
  if we find a local minima/maxima start over again at a new 

random location 

  Pros: 

  Cons: 

Idea 1: restart! 

  Random-restart hill climbing 
  if we find a local minima/maxima start over again at a new 

random location 

  Pros: 
  simple 

  no memory increase 

  for n-queens, usually a few restarts gets us there 
  the 3 million queens problem can be solve in < 1 min! 

  Cons: 
  if space has a lot of local minima, will have to restart a lot 

  loses any information we learned in the first search 

  sometimes we may not know we’re in a local minima/maxima 
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Idea 2: introduce randomness 

def hillClimbing(problem): 
   """ This function takes a problem specification and returns 
       a solution state which it finds via hill climbing """ 
   currentNode = makeNode(initialState(problem)) 
   while True: 
      nextNode = getHighestSuccessor(currentNode,problem) 
      if value(nextNode) <= value(currentNode): 
         return currentNode 
      currentNode = nextNode 

Rather than always selecting the best, pick a random move with 
some probability 

•  sometimes pick best, sometimes random (epsilon greedy) 
•  make better states more likely, worse states less likely 
•  book just gives one… many ways of introducing randomness! 

Idea 3: simulated annealing 

  What the does the term annealing mean? 

“When I proposed to my wife I was 
annealing down on one knee”? 

Idea 3: simulated annealing 

  What the does the term annealing mean? 

Simulated annealing 

  Early on, we may want a lot of randomness 
  keeps it from getting stuck in local minima 

  avoids getting lost on a plateau 

  As time progress, allow less and less randomness in 
the moves made 

  Specify a “cooling” schedule, which is how much 
randomness is included over time 

ra
n
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Idea 4: why just 1 initial state? 

  Local beam search: keep track of k states 
rather than just one 
  Start with k randomly generated states 
  At each iteration, all the successors of all k states 

are generated 
  If any one is a goal state, stop;  
  else select the k best successors from the 

complete list and repeat 

Local beam search 

  Pros/cons? 
  uses/utilized more memory 
  over time, set of states can become very similar 

  How is this different than just randomly restarting 
k times? 

  What do you think regular beam search is? 

An aside… 
Traditional beam search 

  A number of variants: 
  BFS except only keep the top k at each level 

  best-first search (e.g. greedy search or A*) but 
only keep the top k in the priority queue 

  Complete? 

  Used in many domains 
  e.g. machine translation 

  http://www.isi.edu/licensed-sw/pharaoh/ 
  http://www.statmt.org/moses/ 

A few others… 

  Stochastic beam search 
  Instead of choosing k best from the pool, choose k 

semi-randomly 

  Taboo list: prevent returning quickly to same state 
  keep a fixed length list (queue) of visited states 

  add most recent and drop the oldest 

  never visit a state that’s in the taboo list 
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Idea 5: genetic algorithms 

  We have a pool of k states 

  Rather than pick from these, create new states 
by combining states 

  Maintain a “population” of states 

Genetic Algorithms 

  A class of probabilistic optimization algorithms 
  A genetic algorithm maintains a population of 

candidate solutions for the problem at hand, and 
makes it evolve by iteratively applying a set of 
stochastic operators 

  Inspired by the biological evolution process 

  Uses concepts of “Natural Selection” and 
“Genetic Inheritance” (Darwin 1859) 

  Originally developed by John Holland (1975) 

The Algorithm 

1.  Randomly generate an initial population. 
2.  Select parents and “reproduce” the next 

generation 
3.  Randomly mutate some 
4.  Evaluate the fitness of the new generation 
5.  Discard old generation and keep some of the 

best from the new generation 
6.  Repeat step 2 though 4 till iteration N 

1  0  1  0  1  1  1 

1  1  0  0  0  1  1 

Parent 1 

Parent 2 

1  0  1  0  0  1  1 

1  1  0  0  1  1  0 

Child 1 

Child 2 Mutation 
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Genetic algorithms 

Local Search Summary 

  Surprisingly efficient search technique  

  Wide range of applications 

  Formal properties elusive  

  Intuitive explanation:  
  Search spaces are too large for systematic search 

anyway. . .  

  Area will most likely continue to thrive 

Local Search Example: SAT 

  Many real-world problems can be translated 
into propositional logic   
 (A v B v C) ^ (¬B v C v D) ^ (A v ¬C v D)  
 . . . solved by finding truth assignment to 
variables (A, B, C, . . . ) that satisfies the 
formula  

  Applications  
  planning and scheduling  
  circuit diagnosis and synthesis  
  deductive reasoning  
  software testing  
  . . .  
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Satisfiability Testing 

  Best-known systematic method:  
  Davis-Putnam Procedure (1960)  

  Backtracking depth-first search (DFS) through 
space of truth assignments (with unit-propagation)  

Greedy Local Search (Hill Climbing) 

Greedy Local Search (Hill Climbing): GSAT 

  GSAT:  
1. Guess random truth assignment  

2. Flip value assigned to the variable that yields the 
greatest # of satisfied clauses. (Note: Flip even if no 
improvement)  

3. Repeat until all clauses satisfied, or have 
performed “enough” flips   

4. If no sat-assign found, repeat entire process, 
starting from a different initial random assignment. 

GSAT vs. DP on Hard Random Instances 
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Experimental Results: Hard Random 3SAT 

  Effectiveness: prob. that random initial assignment 
leads to a solution.  

  Complete methods, such as DP, up to 400 variables  
  Mixed Walk better than Simulated Annealing  
  better than Basic GSAT  
  better than Davis-Putnam  

Clustering 

Group together similar items.  Find clusters. 

For example… Hierarchical Clustering 

Recursive partitioning/merging of a data set 

1


2


3


4


5


    1           2       3      4            5


1-clustering


2-clustering


3-clustering


4-clustering


5-clustering
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•  Represents all partitionings of 
the data 

•  We can get a K clustering by 
looking at the connected 
components at any given level 

•  Frequently binary dendograms, 
but n-ary dendograms are 
generally easy to obtain with 
minor changes to the 
algorithms 

Dendogram Hierarchical clustering as local search 

  State? 
  a hierarchical clustering of the data 

  basically, a tree over the data 

  huge state space! 

  “adjacent states”? 
  swap two sub-trees 

  can also “graft” a sub-tree on somewhere else 

Swap without temporal constraints, 
example 1 

    A          B      C     D           E 

swap B and D 

    A          D      C     B           E 

no change to the structure 

Swap without temporal constraints, 
example 2 

    A          B      C     D           E 

swap (D,E) and C 

    A          B  D           E    C 

structure changed! 
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Hierarchical clustering as local search 

  state criterion? 

Hierarchical clustering as local search 

  state criterion? 
  how close together are the k-clusterings defined 

by the hierarchical clustering 

weighted mean 
of k-clusterings 

sum of squared 
distances from 
cluster centers 

SS-Hierarchical vs. Ward’s 

SS-Hierarchical 
Greedy,  
Ward’s initialize 

Ward’s 

20 points 21.59 
8 iterations 

21.99 

100 points 411.83 
233 iterations 

444.15 

500 points 5276.30 
? iterations 

5570.95 

Yeast gene expression data set 

Local search for mancala? 


