http://www.youtube.com/watch?v=ICgL10Wsn58

Adversarial Search

CS151
David Kauchak
Fall 2010

Sara Owsley Sood and others

Admin

* Reading?

* Assignment 2
— On the web page
— 3 parts
— Anyone looking for a partner?
— Get started!

* Written assignments
— Post solutions to W1 today
— Post next written assignment soon

A quick review of search

» Rational thinking via search — determine a plan
of actions by searching from starting state to
goal state

* Uninformed search vs. informed search
— what’s the difference?
— what are the techniques we’ve seen?
— pluses and minuses?

* Heuristic design
— admissible?
— dominant?

Why should we study games?

Clear success criteria
Important historically for Al
Fun ©

Good application of search

— hard problems (chess 35'% nodes in search
tree, 100 |egal states)

Some real-world problems fit this model
— game theory (economics)
— multi-agent problems

Types of games

What are some of the games
you've played?

Types of games: game properties

* single-player vs. 2-player vs. multiplayer

* Fully observable (perfect information) vs.
partially observable

 Discrete vs. continuous
 real-time vs. turn-based

 deterministic vs. non-deterministic
(chance)

Strategic thinking Z intelligence

For reasons previously stated, two-player games have
been a focus of Al since its inception...

Begs the question: Is strategic
thinking the same as intelligence?

Strategic thinking Z intelligence

Humans and computers have different relative strengths in

these games:

humans

good at evaluating the
strength of a board
for a player

computers

good at looking ahead in
the game to find winning
combinations of moves

Strategic thinking Z intelligence

How could you figure out how humans
approach playing chess?

1
humans

good at evaluating the .%g

strength of a board s s ,
for a player

How humans play games...

An experiment (by deGroot) was performed

and expert players...

- experts could reconstruct these perfectly
- novice players did far worse...

How humans play games...

An experiment (by deGroot) was performed
in which chess positions were shown to hovice

and expert players...

- experts could reconstruct these perfectly
- novice players did far worse...

Random chess positions (not legal
ones) were then shown to the two
groups

- experts and novices did just as
badly at reconstructing them!

ENs A =
AiT1WiR1
mAN .

People are still working on this problem...

Example of eye movements (presentation time = 5 seconds)

T M it
b S I W 2 e 1
i Tel) lola
“ it N S
_ it oW 2 Rk "
Master's eye movements Novice's eye movements

http://people.brunel.ac.uk/~hsstffg/frg-research/chess _expertise/

Tic Tac Toe as search

How can we pose this as a
search problem?

Tic Tac Toe as search

%\

Tic Tac Toe as search

e

X

/\

O

Tic Tac Toe as search

Eventually, we'll get to a leaf

O[O

X| X|0| | X| X|O

X100 |O|X|O

X[O|X]| | X]|O[X
+1 0

X

The UTILITY of a state tells us how good the states are.

Defining the problem

 INITIAL STATE — board position and the player
whose turn it 1s

« SUCCESSOR FUNCTION- returns a list of
(move, next state) pairs

« TERMINAL TEST — 1s game over? Are we 1n a
terminal state?

« UTILITY FUNCTION - (objective or payoff func)
gives a numeric value for terminal states (1e — chess —

win/lose/draw +1/-1/0, backgammon +192 to -192)

Games’ Branching Factors

* On average, there are ~35 possible moves that a chess player

can make from any board configuration...

18 Ply!!

Hydra at
home in
the
United
Arab
Emirates...

Branching Factor Estimates
for different two-player games

Tic-tac-toe 4
Connect Four 7

Checkers 10
Othello 30
Chess 40

Go 300

Games’ Branching Factors

* On average, there are ~35 possible moves that a chess player
can make from any board configuration... 0 Ply

1Ply |
2 p.ym AMMDAN

Branching Factor Estimates
for different two-player games

Tic-tac-toe 4

Connect Four 7

Boundaries for Checkers 10
qualitatively Othello 30
different games... Chess 40

Go 300

Games’ Branching Factors

* On average, there are ~35 possible moves that a chess player
can make from any board configuration... 0 Ply

1Ply |
2 p.ym AMMDAN

Branching Factor Estimates
for different two-player games

“SO Ive d" ames Tic-tac-toe 4
9 Connect Four 7

CHINOOK (2007) Checkers 10
. Othello 30

computer-dominated Chose 40

Go 300

human-dominated

Games vs. search problems?

* Opponent!
— unpredictable/uncertainty
— deal with opponent strategy
* Time limitations
— must make a move in a reasonable amount of time
— can’t always look to the end

 Path costs

— not about moves, but about UTILITY of the resulting
state/winning

Back to Tic Tac TOe

X’s turn

O’s turn

X’s turn

O’s turn

I'm X, what will ‘O’ do?

X XI|O

O| X0

X
O| X0 O O
X| O X O

Minimizing risk

* The computer doesn’t know what move O
(the opponent) will make

* It can assume, though, that it will try and
make the best move possible

* Even if O atually makes a different move,
we’re no worse off

X|] X] O
O] X| O

X

X
)

Xl X| O X
O

O
X
O
X
O

Optimal Strategy

* An Optimal Strategy is one that is at least
as good as any other, no matter what the
opponent does
— If there's a way to force the win, it will

— Will only lose if there's no other option

How can X play optimally?

MAX (X)
X X Tx
MIN (O) X X
x[o x| o] [xI~
MAX (X) o
x[olx] [x[o)
MIN (O) X X
x[olx] [xTo[x] [x]o[x
TERMINAL | |0 X| [0/0[X X
o X xjol [x/olo
Utility 1 0 +1

How can X play optimally?

« Start from the leaves and propagate the utility
up:
— if X's turn, pick the move that maximizes the utility
— if O’s turn, pick the move that minimizes the utility

Is this optimal? won P

Minimax Algorithm: An Optimal Strategy

minimax(state) =

- If state is a terminal state
Utility(state)

- if MAX’s turn
return the maximum of minimax(...)
on all successors of current state

- if MIN’s turn
return the minimum of minimax(...)
on all successors to current state

» Uses recursion to compute the “value” of each state

* Proceeds to the leaves, then the values are “backed up’
through the tree as the recursion unwinds

« What type of search is this?

* What does this assume about how MIN will play? What
if this isn’t true?

H

def minimax(state):
for all actions a in actions(state):
return the a with the largest minValue(result(state,a))

def maxValue(state):

if state is terminal: MIE:
- Assume the
return utility(state)
Ise: opponent
eee . | will try and
return the a with the largest minValue(result(state,a)) L
value = - minimize
for all actions a in actions(state): \rf::(ierhize
value = max(value, minValue(result(state,a)) Y move
return value y
def minValue(state):
if state is terminal; OPPONENT:
return utility(state) Assume | will
else: try and
return the a with the smallest maxValue(result(state,a)) maximize my
value = + value,
for all actions a in actions(state): minimize his/
value = min(value, maxValue(result(state,a)) her move

return value

Baby Nim

I

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W -1
A\ =10 MAX/.

. 1

MIN wins/ W
MAX loses

Baby Nim

I

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W -1
A\ =10 MAX/.

N

MIN wins/
MAX loses

Baby Nim

I

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W =10
A\ =10 MA

N

MIN wins/
MAX loses

Baby Nim

I

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W =10
A\ =10 MA

N

MIN wins/
MAX loses

Baby Nim

I

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W =10
A\ =10 MA

N

MIN wins/
MAX loses

Baby Nim

I

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W =10
A\ =10 MA

N

MIN wins/
MAX loses

Baby Nim

I

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W =10
A\ =10 ’A;‘A

N

MIN wins/
MAX loses

Baby Nim

I

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W =10
A\ =10 ’A;‘A

N

MIN wins/
MAX loses

Baby Nim

=

Take 1 or 2 at each turn

Goal: take the last match /\
G
MAX wins 1543
~ MIN Sc2(

W=1.0 ‘,‘y@
A\ =0 | "WEaD)Zm

N L

MIN wins/
MAX loses

Baby Nim

=

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W =10

A\ =10 MAYE R

N
MIN wins/
MAX loses

Baby Nim

=

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W =10

A\ =10 MAYE R

N
MIN wins/
MAX loses

Baby Nim

=

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W =10

A\ =10 MAYE R

N
MIN wins/
MAX loses

Baby Nim

I

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
-~ MIN S/

W =1.0 1 ‘,‘y@
A\ =0 | "WEaD)Zm

N L

MIN wins/
MAX loses

Baby Nim

could still win,
I I I I I but not optimal!!!

Take 1 or 2 at each turn
Goal: take the last match

MAX wins
/

W =10

Ao | R
\ y

MIN wins/

MAX loses

AN ANGA

AW 7ANAWATA
)C1.0€1 L

Minimax example 2

Which move should be made: A,, A, or A;?

Minimax example 2

MAX

MIN

Properties of minimax

* Minimax is optimal!

« Are we done?

— For chess, b = 35, d =100 for reasonable games -
exact solution completely infeasible

— |Is minimax feasible for Mancala or Tic Tac Toe?

« Mancala: 6 possible moves. average depth of 40, so 640
which is on the edge

» Tic Tac Toe: branching factor of 4 (on average) and depth of
9... yes!

* |deas?
— pruning!
— improved state utility/evaluation functions

Pruning: do we have to traverse the whole tree?

MAX

MIN

Pruning: do we have to traverse the whole tree?

Minimax example 2

MAX

MIN

Minimax example 2

MAX

MIN

12 7 10 3 2 4 1

Any others if we continue?

Minimax example 2

MAX

MIN

4 12 7 10 3 2 4 1

Minimax example 2

MAX

MIN

Alpha-Beta pruning

* An optimal pruning strategy

— only prunes paths that are suboptimal (i.e. wouldn’t be
chosen by an optimal playing player)

— returns the same result as minimax, but faster

* As we go, keep track of the best and worse
along a path
— alpha = best choice we've found so far for MAX
— beta = best choice we've found so far for MIN

Alpha-Beta pruning

 alpha = best choice we've found so far for MAX

* Using alpha and beta to prune:

— We're examining MIN'’s options for a ply. To do this,
we're examining all possible moves for MAX. If we
find a value for one of MAX’s moves that is less than
alpha, return. (MIN could do better down this path)

MIN

MAX return if any < alpha

Alpha-Beta pruning

 beta = best choice we’ve found so far for MIN

* Using alpha and beta to prune:

— We’re examining MAX'’s options for a ply. To do this,
we're examining all possible moves for MIN. If we
find a value for one of MIN’s possible moves that is
greater than beta, return. (MIN won't end up down
here)

MAX

MIN return if any > beta

Alpha-Beta pruning

Do DF-search until first leaf

MAX

MIN

Alpha-Beta Example (continued)

alpha = best choice we’ve found so far for MAX
beta = best choice we've found so far for MIN

MAX

Alpha-Beta Example (continued)

alpha = best choice we’ve found so far for MAX
beta = best choice we've found so far for MIN

MAX

MIN

Alpha-Beta Example (continued)

alpha = best choice we’ve found so far for MAX
beta = best choice we've found so far for MIN

MAX [3,+00]

MIN

\\"4

Alpha-Beta Example (continued)

alpha = best choice we’ve found so far for MAX
beta = best choice we've found so far for MIN

MAX

MIN

Alpha-Beta Example (continued)

alpha = best choice we’ve found so far for MAX
beta = best choice we've found so far for MIN

MAX

MIN

Alpha-Beta Example (continued)

alpha = best choice we’ve found so far for MAX
beta = best choice we've found so far for MIN

MAX

MIN

Alpha-Beta Example (continued)

alpha = best choice we’ve found so far for MAX
beta = best choice we've found so far for MIN

MAX

MIN

3.3] , 2\ DK B 2

Alpha-Beta Example (continued)

alpha = best choice we’ve found so far for MAX
beta = best choice we've found so far for MIN

MAX

MIN

3.3] o0, 21/ BK 2

def maxValue(state, alpha, beta):
If state is terminal:

return utility(state)
else:

value = -
for all actions a in actions(state):

value = max(value, minValue(result(state,a), alpha, beta)
if value >= beta:

return value # prune!

alpha = max(alpha, value) # update alpha
return value

We’re making a decision for MAX.

* When considering the MIN’s choices, if we find a value that is
greater than beta, stop, because MIN won’t make this choice
« if we find a better path than alpha, update alpha

def minValue(state, alpha, beta):
If state is terminal:

return utility(state)
else:

value = +
for all actions a in actions(state):

value = min(value, maxValue(result(state,a), alpha, beta)
if value <= alpha:
return value # prune!

beta = min(beta, value) # update alpha
return value

We’re making a decision for MIN.

* When considering the MAX’s choices, if we find a value that
is less than alpha, stop, because MAX won’t make this choice
« if we find a better path than beta for MIN, update beta

Baby NIM2: take 1, 2 or 3 sticks

®

Effectiveness of pruning

* Notice that as we gain more information
about the state of things, we're more likely

to prune
* What affects the performance of pruning?
— key: which order we visit the states

— can try and order them so as to improve
pruning

Effectiveness of pruning

* |f perfect state ordering:
— O(b™) becomes O(b™?)
— We can solve a tree twice as deep!
 Random order:
— O(b™) becomes O(b3m4)
— still pretty good
* For chess using a basic ordering
— Within a factor of 2 of O(b™?)

