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http://www.xkcd.com/816/ 

Neural Networks 

David Kauchak 

CS151 

Fall 2010 

Admin 

 Pre-registration pizza 
 Tuesday 5:30-6:30pm 

 Edmunds lounge 

 Assignment 5 due Wed. at midnight 

Reviews 
  Much improved from last time 

  Some fun papers 

  Technical correctness 
  most of you mentioned the experiments/results section 

  also comment on the correctness of the actual method 
description 

  citation: 
 <authors>. <year>. <title>. <how_published>. 

 be consistent and keep it simple 

  look at the papers for examples 

 don’t just copy it from citeseer! 
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What is this?    How did you know? 

293871947009  

* √52.86301  

/ 80.2341 = ? 

What is the answer to this calculation? 

293871947009  

* √52.86301  

/ 80.2341 

= 26630240520.936812470902167425359 

A computer can do this almost instantly! 

Neural Networks 
Neural Networks try to mimic the structure and 
function of our nervous system 

People like biologically motivated approaches (like genetic 
algorithms) 
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Our Nervous System 
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Our nervous system: the 
computer science view 

  the human brain is a large 
collection of interconnected 
neurons 

  a NEURON is a brain cell 
  collect, process, and disseminate 

electrical signals 

  Neurons are connected via synapses 

  They FIRE depending on the 
conditions of the neighboring neurons 

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

Our nervous system 

  The human brain 
 contains ~1011 (100 billion) 

neurons 

 each neuron is connected 
to ~104 (10,000) other 
neurons 

  What is this in CS language? 

 Neurons can fire as fast as 
10-3 seconds 

How does this compare to a computer? 

Man vs. Machine 

109 transistors 
1011 bits of ram 
1013 bits on disk 
10-9 cycle time 

1011 neurons 
1011 neurons 
1014 synapses 
10-3 “cycle” time 
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Brains are still pretty fast 

Who is this? 

Brains are still pretty fast 

  If you were me, you’d be able to 
identify this person in 10-1 s 

  Given a neuron firing time of 10-3 s, 
how many neurons in sequence 
could fire in this time? 
 A few hundred 

  What are possible explanations? 
 either neurons are performing some 

very complicated computations 

 brain is taking advantage of the 
massive parallelization 

W is the strength of signal sent between A and B. 

If A fires and w is positive, then A stimulates B. 

If A fires and w is negative, then A inhibits B. 

If a node is stimulated enough, then it also fires.   

How much stimulation is required is determined by its threshold. 

Weight w Node A Node B 

(neuron) (neuron) 

Neural Networks 
Node (Neuron) 

Edge (synapses) 

our approximation 
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Output y 

Input x1 

Input x2 

Input x3 

Input x4 

Weight w1 

Weight w2 

Weight w3 

Weight w4 

A Single Neuron/Perceptron 

€ 

in = wi
i
∑ xi

€ 

∑

€ 

g(in)

threshold function 

Possible threshold functions 

  hard threshold 
  if in (the sum of weights) >= 

threshold 1, 0 otherwise 

  Sigmoid 

€ 

g(x) =
1

1+ e−ax

1 

-1 

1 

0.5 

A Single Neuron/Perceptron 

? 

Threshold of 1 

1 

1 

0 

1 

1 

-1 

1 

0.5 

A Single Neuron/Perceptron 

0 

Threshold of 1 

1 

1 

0 

1 

Weighted sum is 
0.5, which is not 
equal or larger 
than the 
threshold 



11/8/10 

6 

Neural networks 

 Different kinds/characteristics of networks 

inputs 

inputs inputs 

How are these different? 

Neural networks 

inputs 

inputs 

Feed forward networks (we’ll 
mostly deal with these) 

hidden units/layer 

Neural networks 

  Recurrent network 

  Output is fed back to input 

  Can support memory! 

  How? 

inputs 

History of Neural Networks 

  McCulloch and Pitts (1943) – introduced model 
of artificial neurons and suggested they could 
learn 

  Hebb (1949) – Simple updating rule for learning 
  Rosenblatt (1962) - the perceptron model 
  Minsky and Papert (1969) – wrote Perceptrons  
  Bryson and Ho (1969, but largely ignored until 

1980s) – invented back-propagation learning for 
multilayer networks 
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Perceptron 

  First wave in neural networks in the 1960’s 

  Single neuron 

  Trainable: its threshold and input weights can be 
modified 

  If the neuron doesn’t give the desired output, 
then it has made a mistake. 

  Input weights and threshold can be changed 
according to a learning algorithm 

Examples - Logical operators   

 AND – if all inputs are 1, return 1, 
otherwise return 0 

 OR – if at least one input is 1, return 1, 
otherwise return 0 

 NOT – return the opposite of the input 

 XOR – if exactly one input is 1, then return 
1, otherwise return 0 

AND 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

AND 
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T = 2 Output y 

Input x1 

Input x2 

W1 = 1 

W2 = 1 

AND 

Inputs are either 0 or 1 

Output is 1 only if  
all inputs are 1 

T = ? Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = ? 

W2  = ? 

W3 = ? 

W4  = ? 

AND 

T = 4 Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = 1 

W2  = 1 

W3 = 1 

W4  = 1 

AND 

Inputs are either 0 or 1 

Output is 1 only if  
all inputs are 1 

OR 
x1 x2 x1 or x2 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

OR 

T = 1 Output y 

Input x1 

Input x2 

W1 = 1 

W2 = 1 

OR 

Inputs are either 0 or 1 

Output is 1 if at  
least 1 input is 1 

T = ? Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = ? 

W2  = ? 

W3 = ? 

W4  = ? 

OR 

T = 1 Output y 

Input x1 

Input x2 

Input x3 

Input x4 

W1 = 1 

W2  = 1 

W3 = 1 

W4  = 1 

OR 

Inputs are either 0 or 1 

Output is 1 if at  
least 1 input is 1 
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NOT 

x1 not x1 

0 1 

1 0 

T = ? Output y Input x1 

W1  = ? 

NOT 

T = 0 Output y Input x1 

W1  = -1 

NOT 

Input is either 0 or 1 If input is 1, output is 0. 
If input is 0, output is 1. 

How about… 

x1 x2 x3 x1 and 
x2 

0 0 0 1 

0 1 0 0 

1 0 0 1 

1 1 0 0 

0 0 1 1 

0 1 1 1 

1 0 1 1 

1 1 1 0 

T = ? Output y 

Input x1 

Input x3 

w1 = ? 

w3 = ? 

Input x2 

w2 = ? 
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Training neural nets 

output: 1, -1 

-  We’d like to train neural 
networks 
-  We can learn to classify 
-  We can also learn a regression 
function from input to a real 
value 

What are the parameters we 
can modify/learn for the NN? 

NN parameters 

Learn the individual 
weights between nodes 

Learn individual 
node parameters 
(e.g. threshold) 

An aside: linear regression 

Given some points, 
find the line that best 
fits/explains the data 

How can we find this line? 

An aside: linear regression 

Learn a line h that 
minimizes an error function: 

€ 

error(h) = (yi − h(xi))
2

i=1

n
∑

€ 

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

in the case of a 2d line: 

function for 
a line 
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Linear regression 

 We’d like to minimize the error 
 Find w1 and w0 such that the error is minimized 

 How can we do this? 

€ 

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

Linear regression 

  Partial derivatives give us the slope in that dimension 

  Option 1 

  When slope is 0, it’s a min or a max 

  This approach gets hard if we want to do non-linear regression 

  Option 2: gradient descent 
  move in the appropriate direction (but not necessarily down to 0) 
  we can view the problem as a search for wi that minimizes the 

loss 

€ 

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑minimize: 

Gradient descent 
  If the loss function is convex, what does this 

mean for our minimum? 
  In three dimensions, think about a curved piece of 

paper 

 Or, think of it like skiing in a big bowl 

  Approach: 
 pick a starting point (w) 

  repeat until loss doesn’t decrease in all dimensions: 
  pick a dimension 
  move a small amount in that dimension towards decreasing 

loss (using the derivative) 

Gradient descent 

 pick a starting point (w) 

  repeat until loss doesn’t decrease in all dimensions: 
  pick a dimension 

  move a small amount in that dimension towards decreasing 
loss (using the derivative) 

€ 

wi = wi −α
d
dwi

error(w)

learning rate (how much we want to 
move in the error direction) 
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Linear gradient descent 

 pick a starting point (w) 

  repeat until loss doesn’t decrease in all dimensions: 
  pick a dimension 

  move a small amount in that dimension towards decreasing 
loss (using the derivative) 

€ 

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

the value of the example in 
that dimension 

sum the error over 
all the examples 

difference between 
actual and predicted 

Back to training a perceptron 

  We want to train a 
perceptron to learn a 
function given training 
data 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
T = ? Output y 

Input x1 

Input x2 

W1 = ? 

W2 = ? 

Threshold T Output y 

Input x1 

Input x2 

Input x3 

Input x4 

Weight w1 

Weight w2 

Weight w3 

Weight w4 

If w1x1 + w2x2 + … + wnxn ≥ T,  

 then the output of n is 1. 

Otherwise,  

 the output of n is 0. 

A Single Perceptron 
Does this learning problem look 
like anything we’ve seen? 

Perceptron Training Rule 

- pick a random weight 
vector 
- repeat until loss doesn’t 
decrease in all dimensions: 

- pick a dimension 
- move a small amount in that 
dimension towards decreasing 
loss (using the derivative) 

- pick a random weight 
vector 
- repeat until we correctly 
classify all the points: 

- pick an example 
-  if we get it wrong: 

-  modify the weights a small 
amount  

linear regression perceptron learning 

Key difference: regression error vs. classification error 
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Perceptron Training Rule 

- pick a random weight 
vector 
- repeat until loss doesn’t 
decrease in all dimensions: 

- pick a dimension 
- move a small amount in that 
dimension towards decreasing 
loss (using the derivative) 

- pick a random weight 
vector 
- repeat until we correctly 
classify all the points: 

- pick an example 
-  if we get it wrong: 

-  modify the weights a small 
amount  

linear regression perceptron learning 

€ 

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

€ 

wi = wi −α xi (y j − h(x))

Modifying the weights 

  Only update the weights when we get an 
example wrong 

€ 

wi = wi −α xi (y j − h(x))
For each dimension i in the weight vector: 

how much this feature 
played a role (e.g. active or 
not) 

learning rate 

difference between 
actual and predicted 

Example: a simple problem 
   4 points linearly separable 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 
-1.5 
-1 

-0.5 
0 

0.5 
1 

1.5 
2 

(1/2, 1)  

(1,1/2) (-1,1/2)  

(-1,1)  
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 
-1.5 
-1 

-0.5 
0 

0.5 
1 

1.5 
2 first correction 

W(1) = (1/3,5/6)  

Perceptron learning 

 How does this compare to say the linear 
SVM? 

Perceptron learning 

  Only works when data is linearly separable 

  Voted perceptron helps get a better linear 
separator 

  Has remained popular as an approach for 
learning weights in high dimensional space 

  Other approaches for training perceptrons to 
exist: 
 Delta rule (Gradient Descent Approach) 

 Linear Programming 
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XOR 
x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

How would the perceptron do? 

Linearly Separable 

x1 x2 x1 and x2 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

x1 

x2 

x1 x2 x1 or x2 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

x1 

x2 

x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

x1 

x2 

Perceptrons 

  1969 book by Marvin Minsky and Seymour 
Papert 

  The problem is that they can only work for 
classification problems that are linearly 
separable 

  Insufficiently expressive 
  “Important research problem” to investigate 

multilayer networks although they were 
pessimistic about their value 

XOR 
Input x1 

Input x2 

?  

? 

?  

? 

T = ? 

T = ? 

T = ? 
? 

? 

x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Output = x1 xor x2 
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XOR 
Input x1 

Input x2 

1  

-1 

-1  

1 

T = 1 

T = 1 

T = 1 
1 

1 

x1 x2 x1 xor x2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Output = x1 xor x2 

Logistic and other thresholds 

  Only update the weights when we get an 
example wrong 

€ 

wi = wi −α xi (y j − h(x))
For each dimension i in the weight vector: 

€ 

d
dwi

error(w)

Logistic and other thresholds 

Any problem with using 
the threshold function? 

€ 

wi = wi −α d
dwi

error(w)

Logistic and other thresholds 

We’ll use a sigmoid, which 
approximates a threshold but has a 
well defined derivative 

€ 

wi = wi −α d
dwi

error(w)

€ 

wi = wi −α xi g'(w ⋅ x)(y - h(x))

Now have a term for 
the slope at that point 
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Learning in Multilayer Networks 

 Similar idea as perceptrons 

 Examples are presented to the network 

  If the network computes an output that 
matches the desired, nothing is done 

  If there is an error, then the weights are 
adjusted to balance the error 

Learning in multilayer networks 
  Key idea for perceptron learning: if the perceptron’s 

output is different than the expected output, update the 
weights 

  Challenge: for multilayer networks, we don’t know what 
the expected output/error is for the internal nodes 

perceptron multi-layer network 

expected output? 

Backpropagation 

€ 

wi = wi −α g'(w ⋅ xi) (y - h(x)) x i

Say we get it wrong, and we now want to 
update the weights 

€ 

wi = wi −α g'(w ⋅ ai) (y - h(x)) ai

the inputs to the output node 

Backpropagation 
Say we get it wrong, and we now want to 
update the weights 

“back-propagate” the error: 

Assume all of these nodes were 
responsible for some of the error 

How can we figure out how much they 
were responsible for? 
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Backpropagation 
Say we get it wrong, and we now want to 
update the weights 

error 

w1 

w2 w3 

error for node i is: wi error 

Backpropagation 

€ 

wi = wi −α g'(w ⋅ x) (y - h(x)) x i

Say we get it wrong, and we now want to 
update the weights 

€ 

wi = wi −α g'(w ⋅ ai) error ai

the nodes fraction 
of the error 

Backpropagation 

  calculate the error at the output layer 

  backpropagate the error up the network 
  if a node has multiple output nodes, sum the error of 

these nodes 

  Update the weights based on these errors 

  Can be shown that this is the appropriate thing 
to do based on our assumptions 

  That said, many neuroscientists don’t think the 
brain does backpropagation of errors 

Neural network regression 

 Given enough hidden nodes, you can 
learn any function with a neural network 

 Challenges: 
 overfitting 

 picking a network structure (like picking our 
Bayes net structure) 

 can require a lot of tweaking of parameters, 
preprocessing, etc. 
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Popular for digit recognition and many computer vision tasks 

http://yann.lecun.com/exdb/mnist/ 

Cog sci people like NNs 

  Expression/emotion recognition 
 Gary Cottrell et al 

  Language learning 

Interpreting Satellite Imagery for 
Automated Weather Forecasting Summary 

 Perceptrons, one layer networks, are 
insufficiently expressive 

 Multi-layer networks are sufficiently 
expressive and can be trained by error 
back-propogation 

 Many applications including speech, 
driving, hand written character recognition, 
fraud detection, driving, etc. 


