

Admin

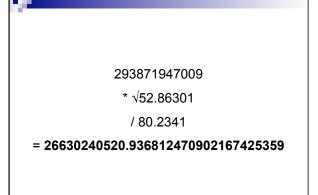
- Pre-registration pizza
 Tuesday 5:30-6:30pm
 Edmunds lounge
- Assignment 5 due Wed. at midnight

Reviews

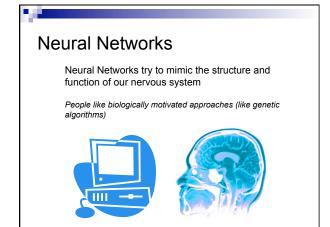
- Much improved from last time
- Some fun papers
- Technical correctness
 - most of you mentioned the experiments/results section
 also comment on the correctness of the actual method description
- citation:
 - authors>. <year>. <title>. <how_published>.
 - $\hfill\square$ be consistent and keep it simple
 - $\hfill\square$ look at the papers for examples
 - don't just copy it from citeseer!

293871947009 * √52.86301 / 80.2341 = ?

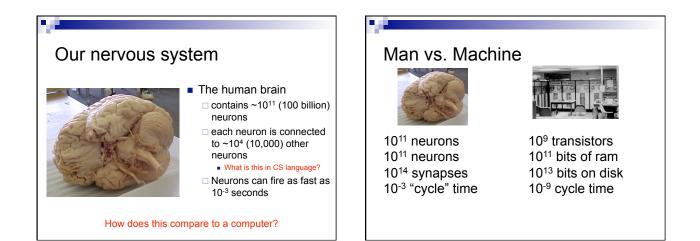
What is the answer to this calculation?



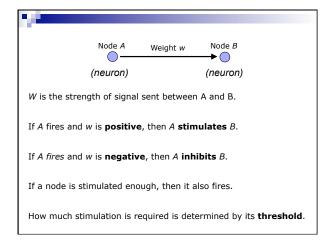
A computer can do this almost instantly!

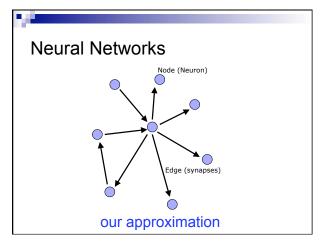


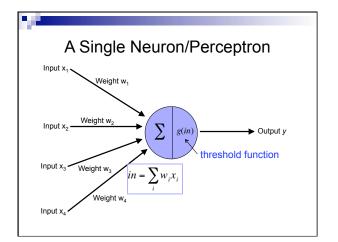


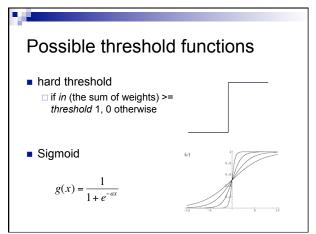


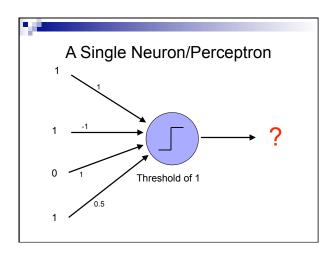
Brains are still pretty fast Image: Strain strain

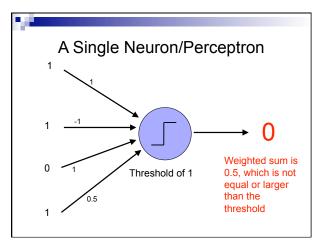


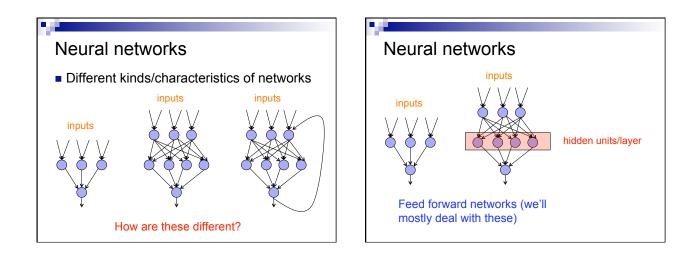


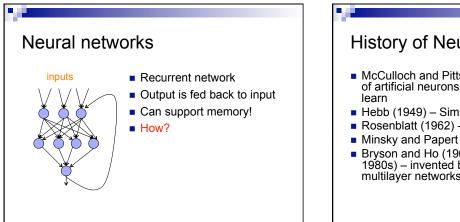












History of Neural Networks

- McCulloch and Pitts (1943) introduced model of artificial neurons and suggested they could
- Hebb (1949) Simple updating rule for learning
- Rosenblatt (1962) the perceptron model
- Minsky and Papert (1969) wrote Perceptrons
- Bryson and Ho (1969, but largely ignored until 1980s) invented back-propagation learning for multilayer networks

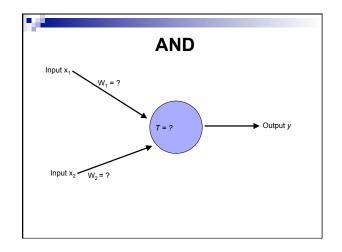
Perceptron

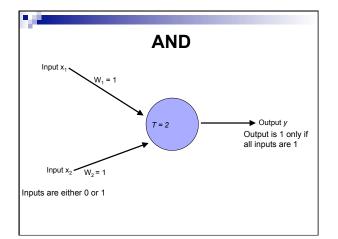
- First wave in neural networks in the 1960's
- Single neuron
- Trainable: its threshold and input weights can be modified
- If the neuron doesn't give the desired output, then it has made a mistake.
- Input weights and threshold can be changed according to a learning algorithm

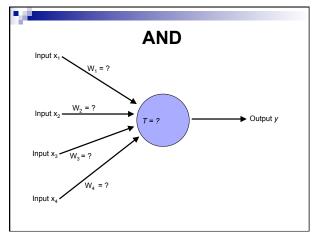
Examples - Logical operators

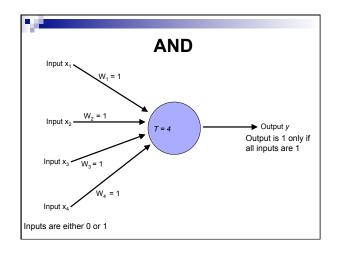
- AND if all inputs are 1, return 1, otherwise return 0
- **OR** if at least one input is 1, return 1, otherwise return 0
- **NOT** return the opposite of the input
- **XOR** if exactly one input is 1, then return 1, otherwise return 0

×			
AND			
	x ₁	x ₂	\mathbf{x}_1 and \mathbf{x}_2
	0	0	0
	0	1	0
	1	0	0
	1	1	1

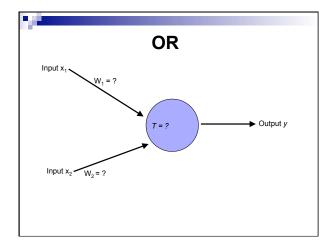


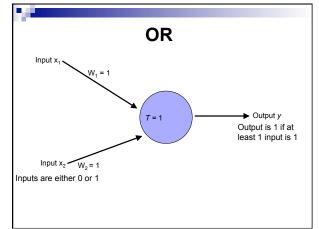


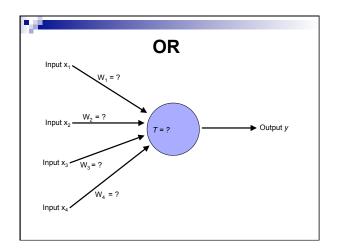


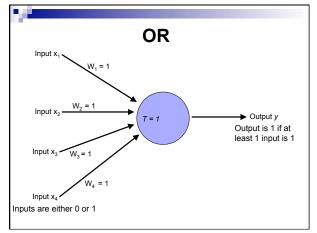


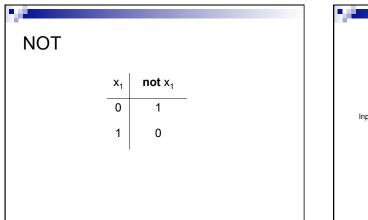
OR			
	x ₁	x ₂	$x_1 \text{ or } x_2$
	0	0	0
	0	1	1
	1	0	1
	1	1	1

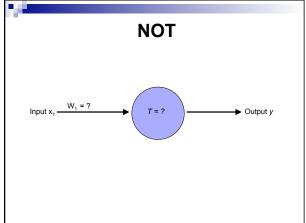


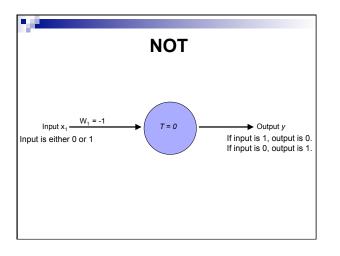


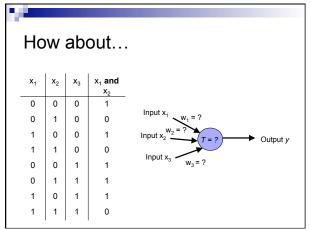


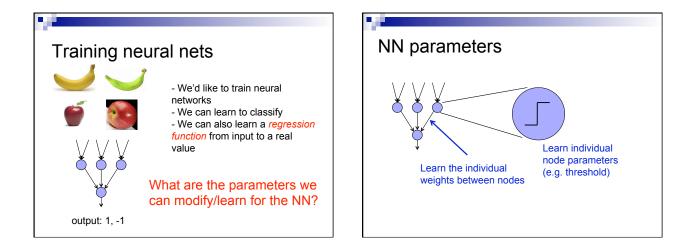


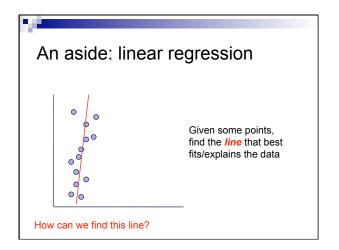


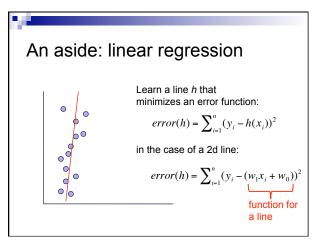


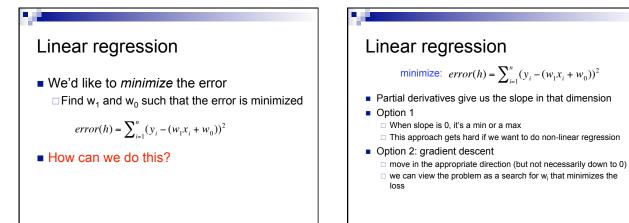


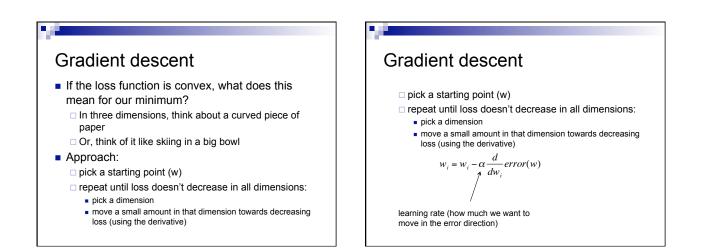


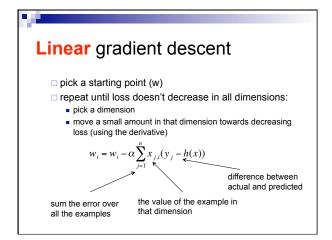


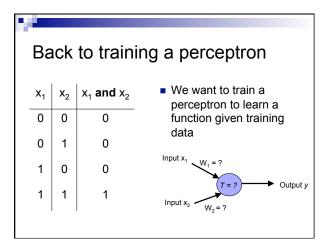


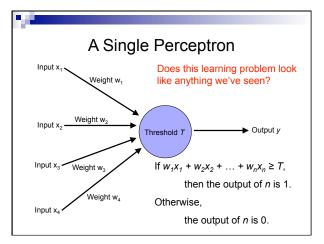


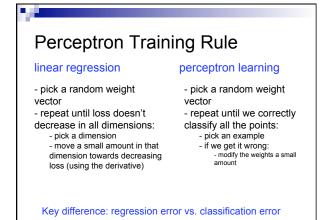


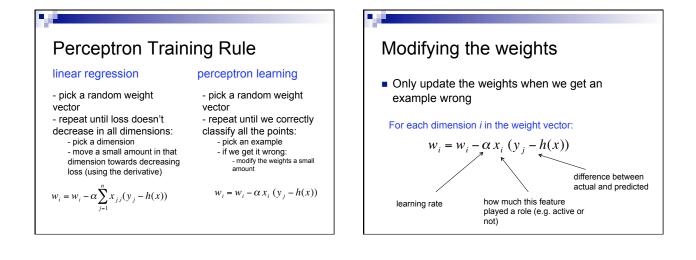


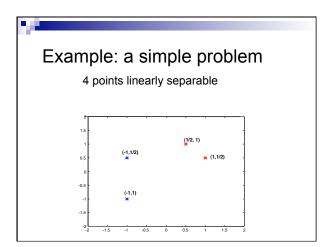


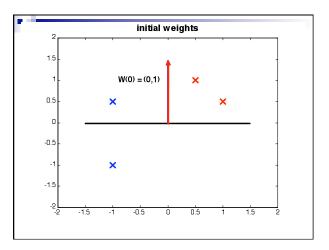


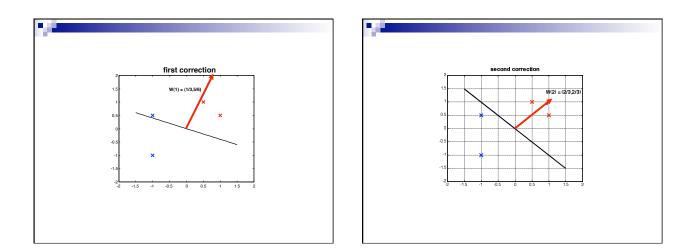










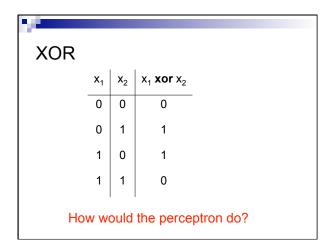


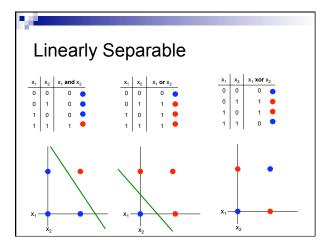
Perceptron learning

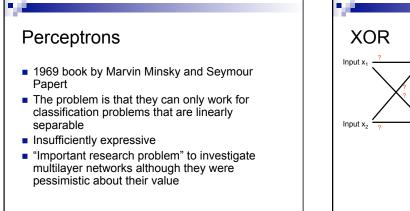
How does this compare to say the linear SVM?

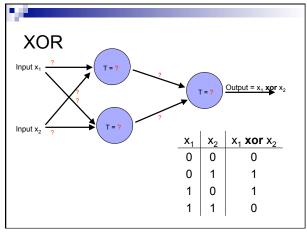
Perceptron learning

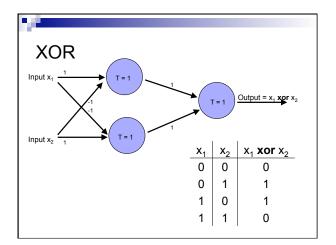
- Only works when data is linearly separable
- Voted perceptron helps get a better linear separator
- Has remained popular as an approach for learning weights in high dimensional space
- Other approaches for training perceptrons to exist:
 - Delta rule (Gradient Descent Approach)
 - Linear Programming

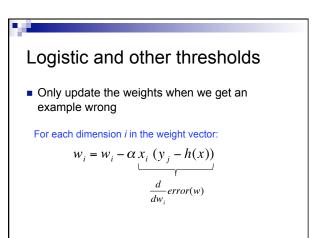




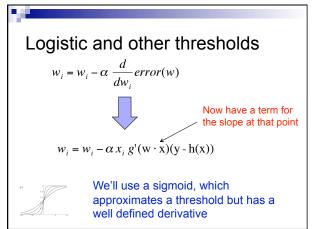


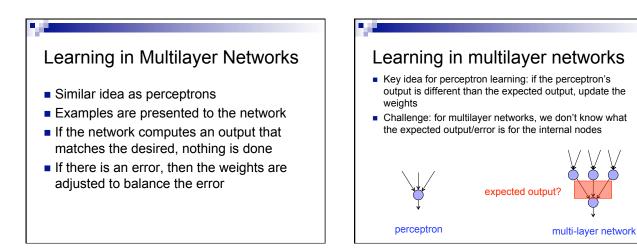


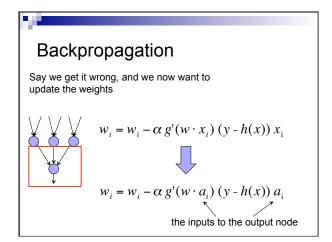


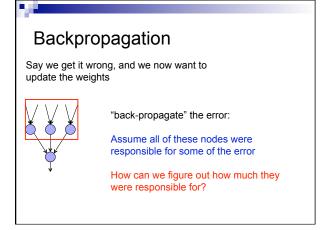


Logistic and other thresholds $w_i = w_i - \alpha \frac{d}{dw_i} error(w)$ Any problem with using the threshold function? Logistic and oth $w_i = w_i - \alpha \frac{d}{dw_i} error(w)$ $w_i = w_i - \alpha x_i g'(w)$ We'll use a approximat well defined

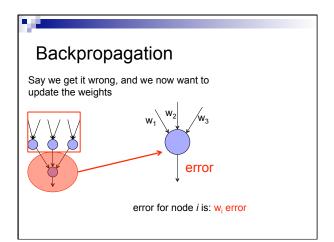


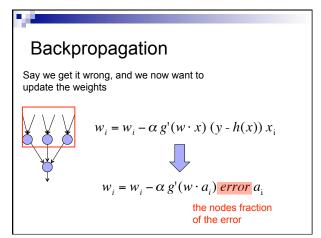






18



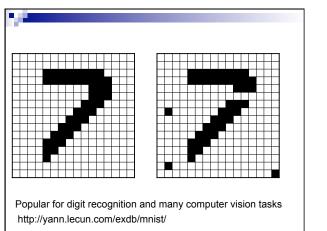


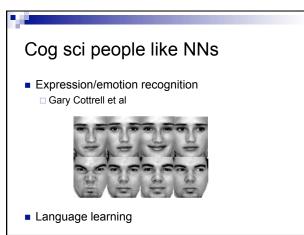
Backpropagation

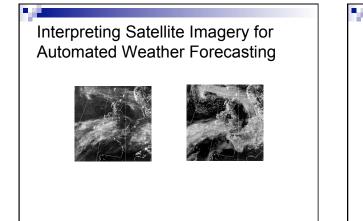
- calculate the error at the output layer
- backpropagate the error up the network
 if a node has multiple output nodes, sum the error of these nodes
- Update the weights based on these errors
- Can be shown that this is the appropriate thing to do based on our assumptions
- That said, many neuroscientists don't think the brain does backpropagation of errors

Neural network regression

- Given enough hidden nodes, you can learn any function with a neural network
- Challenges:
 - □overfitting
 - picking a network structure (like picking our Bayes net structure)
 - □ can require a lot of tweaking of parameters, preprocessing, etc.







Summary

- Perceptrons, one layer networks, are insufficiently expressive
- Multi-layer networks are sufficiently expressive and can be trained by error back-propogation
- Many applications including speech, driving, hand written character recognition, fraud detection, driving, etc.