
11/8/10

1

http://www.xkcd.com/816/

Neural Networks

David Kauchak

CS151

Fall 2010

Admin

 Pre-registration pizza
 Tuesday 5:30-6:30pm

 Edmunds lounge

 Assignment 5 due Wed. at midnight

Reviews
  Much improved from last time

  Some fun papers

  Technical correctness
  most of you mentioned the experiments/results section

  also comment on the correctness of the actual method
description

  citation:
 <authors>. <year>. <title>. <how_published>.

 be consistent and keep it simple

  look at the papers for examples

 don’t just copy it from citeseer!

11/8/10

2

What is this? How did you know?

293871947009

* √52.86301

/ 80.2341 = ?

What is the answer to this calculation?

293871947009

* √52.86301

/ 80.2341

= 26630240520.936812470902167425359

A computer can do this almost instantly!

Neural Networks
Neural Networks try to mimic the structure and
function of our nervous system

People like biologically motivated approaches (like genetic
algorithms)

11/8/10

3

Our Nervous System

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

Neuron

Our nervous system: the
computer science view

  the human brain is a large
collection of interconnected
neurons

  a NEURON is a brain cell
  collect, process, and disseminate

electrical signals

  Neurons are connected via synapses

  They FIRE depending on the
conditions of the neighboring neurons

Synapses

Axon

Dendrites

Synapses
+

+

+
-
-

(weights)

Nodes

Our nervous system

  The human brain
 contains ~1011 (100 billion)

neurons

 each neuron is connected
to ~104 (10,000) other
neurons

  What is this in CS language?

 Neurons can fire as fast as
10-3 seconds

How does this compare to a computer?

Man vs. Machine

109 transistors
1011 bits of ram
1013 bits on disk
10-9 cycle time

1011 neurons
1011 neurons
1014 synapses
10-3 “cycle” time

11/8/10

4

Brains are still pretty fast

Who is this?

Brains are still pretty fast

  If you were me, you’d be able to
identify this person in 10-1 s

  Given a neuron firing time of 10-3 s,
how many neurons in sequence
could fire in this time?
 A few hundred

  What are possible explanations?
 either neurons are performing some

very complicated computations

 brain is taking advantage of the
massive parallelization

W is the strength of signal sent between A and B.

If A fires and w is positive, then A stimulates B.

If A fires and w is negative, then A inhibits B.

If a node is stimulated enough, then it also fires.

How much stimulation is required is determined by its threshold.

Weight w Node A Node B

(neuron) (neuron)

Neural Networks
Node (Neuron)

Edge (synapses)

our approximation

11/8/10

5

Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

A Single Neuron/Perceptron

€

in = wi
i
∑ xi

€

∑

€

g(in)

threshold function

Possible threshold functions

  hard threshold
  if in (the sum of weights) >=

threshold 1, 0 otherwise

  Sigmoid

€

g(x) =
1

1+ e−ax

1

-1

1

0.5

A Single Neuron/Perceptron

?

Threshold of 1

1

1

0

1

1

-1

1

0.5

A Single Neuron/Perceptron

0

Threshold of 1

1

1

0

1

Weighted sum is
0.5, which is not
equal or larger
than the
threshold

11/8/10

6

Neural networks

 Different kinds/characteristics of networks

inputs

inputs inputs

How are these different?

Neural networks

inputs

inputs

Feed forward networks (we’ll
mostly deal with these)

hidden units/layer

Neural networks

  Recurrent network

  Output is fed back to input

  Can support memory!

  How?

inputs

History of Neural Networks

  McCulloch and Pitts (1943) – introduced model
of artificial neurons and suggested they could
learn

  Hebb (1949) – Simple updating rule for learning
  Rosenblatt (1962) - the perceptron model
  Minsky and Papert (1969) – wrote Perceptrons
  Bryson and Ho (1969, but largely ignored until

1980s) – invented back-propagation learning for
multilayer networks

11/8/10

7

Perceptron

  First wave in neural networks in the 1960’s

  Single neuron

  Trainable: its threshold and input weights can be
modified

  If the neuron doesn’t give the desired output,
then it has made a mistake.

  Input weights and threshold can be changed
according to a learning algorithm

Examples - Logical operators

 AND – if all inputs are 1, return 1,
otherwise return 0

 OR – if at least one input is 1, return 1,
otherwise return 0

 NOT – return the opposite of the input

 XOR – if exactly one input is 1, then return
1, otherwise return 0

AND

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

AND

11/8/10

8

T = 2 Output y

Input x1

Input x2

W1 = 1

W2 = 1

AND

Inputs are either 0 or 1

Output is 1 only if
all inputs are 1

T = ? Output y

Input x1

Input x2

Input x3

Input x4

W1 = ?

W2 = ?

W3 = ?

W4 = ?

AND

T = 4 Output y

Input x1

Input x2

Input x3

Input x4

W1 = 1

W2 = 1

W3 = 1

W4 = 1

AND

Inputs are either 0 or 1

Output is 1 only if
all inputs are 1

OR
x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

11/8/10

9

T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

OR

T = 1 Output y

Input x1

Input x2

W1 = 1

W2 = 1

OR

Inputs are either 0 or 1

Output is 1 if at
least 1 input is 1

T = ? Output y

Input x1

Input x2

Input x3

Input x4

W1 = ?

W2 = ?

W3 = ?

W4 = ?

OR

T = 1 Output y

Input x1

Input x2

Input x3

Input x4

W1 = 1

W2 = 1

W3 = 1

W4 = 1

OR

Inputs are either 0 or 1

Output is 1 if at
least 1 input is 1

11/8/10

10

NOT

x1 not x1

0 1

1 0

T = ? Output y Input x1

W1 = ?

NOT

T = 0 Output y Input x1

W1 = -1

NOT

Input is either 0 or 1 If input is 1, output is 0.
If input is 0, output is 1.

How about…

x1 x2 x3 x1 and
x2

0 0 0 1

0 1 0 0

1 0 0 1

1 1 0 0

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 0

T = ? Output y

Input x1

Input x3

w1 = ?

w3 = ?

Input x2

w2 = ?

11/8/10

11

Training neural nets

output: 1, -1

-  We’d like to train neural
networks
-  We can learn to classify
-  We can also learn a regression
function from input to a real
value

What are the parameters we
can modify/learn for the NN?

NN parameters

Learn the individual
weights between nodes

Learn individual
node parameters
(e.g. threshold)

An aside: linear regression

Given some points,
find the line that best
fits/explains the data

How can we find this line?

An aside: linear regression

Learn a line h that
minimizes an error function:

€

error(h) = (yi − h(xi))
2

i=1

n
∑

€

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

in the case of a 2d line:

function for
a line

11/8/10

12

Linear regression

 We’d like to minimize the error
 Find w1 and w0 such that the error is minimized

 How can we do this?

€

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑

Linear regression

  Partial derivatives give us the slope in that dimension

  Option 1

  When slope is 0, it’s a min or a max

  This approach gets hard if we want to do non-linear regression

  Option 2: gradient descent
  move in the appropriate direction (but not necessarily down to 0)
  we can view the problem as a search for wi that minimizes the

loss

€

error(h) = (yi − (w1xi + w0))
2

i=1

n
∑minimize:

Gradient descent
  If the loss function is convex, what does this

mean for our minimum?
  In three dimensions, think about a curved piece of

paper

 Or, think of it like skiing in a big bowl

  Approach:
 pick a starting point (w)

  repeat until loss doesn’t decrease in all dimensions:
  pick a dimension
  move a small amount in that dimension towards decreasing

loss (using the derivative)

Gradient descent

 pick a starting point (w)

  repeat until loss doesn’t decrease in all dimensions:
  pick a dimension

  move a small amount in that dimension towards decreasing
loss (using the derivative)

€

wi = wi −α
d
dwi

error(w)

learning rate (how much we want to
move in the error direction)

11/8/10

13

Linear gradient descent

 pick a starting point (w)

  repeat until loss doesn’t decrease in all dimensions:
  pick a dimension

  move a small amount in that dimension towards decreasing
loss (using the derivative)

€

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

the value of the example in
that dimension

sum the error over
all the examples

difference between
actual and predicted

Back to training a perceptron

  We want to train a
perceptron to learn a
function given training
data

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1
T = ? Output y

Input x1

Input x2

W1 = ?

W2 = ?

Threshold T Output y

Input x1

Input x2

Input x3

Input x4

Weight w1

Weight w2

Weight w3

Weight w4

If w1x1 + w2x2 + … + wnxn ≥ T,

 then the output of n is 1.

Otherwise,

 the output of n is 0.

A Single Perceptron
Does this learning problem look
like anything we’ve seen?

Perceptron Training Rule

- pick a random weight
vector
- repeat until loss doesn’t
decrease in all dimensions:

- pick a dimension
- move a small amount in that
dimension towards decreasing
loss (using the derivative)

- pick a random weight
vector
- repeat until we correctly
classify all the points:

- pick an example
-  if we get it wrong:

-  modify the weights a small
amount

linear regression perceptron learning

Key difference: regression error vs. classification error

11/8/10

14

Perceptron Training Rule

- pick a random weight
vector
- repeat until loss doesn’t
decrease in all dimensions:

- pick a dimension
- move a small amount in that
dimension towards decreasing
loss (using the derivative)

- pick a random weight
vector
- repeat until we correctly
classify all the points:

- pick an example
-  if we get it wrong:

-  modify the weights a small
amount

linear regression perceptron learning

€

wi = wi −α x j ,i(y j − h(x))
j=1

n

∑

€

wi = wi −α xi (y j − h(x))

Modifying the weights

  Only update the weights when we get an
example wrong

€

wi = wi −α xi (y j − h(x))
For each dimension i in the weight vector:

how much this feature
played a role (e.g. active or
not)

learning rate

difference between
actual and predicted

Example: a simple problem
 4 points linearly separable

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5
-1

-0.5
0

0.5
1

1.5
2

(1/2, 1)

(1,1/2) (-1,1/2)

(-1,1)

11/8/10

15

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5
-1

-0.5
0

0.5
1

1.5
2 first correction

W(1) = (1/3,5/6)

Perceptron learning

 How does this compare to say the linear
SVM?

Perceptron learning

  Only works when data is linearly separable

  Voted perceptron helps get a better linear
separator

  Has remained popular as an approach for
learning weights in high dimensional space

  Other approaches for training perceptrons to
exist:
 Delta rule (Gradient Descent Approach)

 Linear Programming

11/8/10

16

XOR
x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

How would the perceptron do?

Linearly Separable

x1 x2 x1 and x2

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2

x1 x2 x1 or x2

0 0 0

0 1 1

1 0 1

1 1 1

x1

x2

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

x1

x2

Perceptrons

  1969 book by Marvin Minsky and Seymour
Papert

  The problem is that they can only work for
classification problems that are linearly
separable

  Insufficiently expressive
  “Important research problem” to investigate

multilayer networks although they were
pessimistic about their value

XOR
Input x1

Input x2

?

?

?

?

T = ?

T = ?

T = ?
?

?

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

Output = x1 xor x2

11/8/10

17

XOR
Input x1

Input x2

1

-1

-1

1

T = 1

T = 1

T = 1
1

1

x1 x2 x1 xor x2

0 0 0

0 1 1

1 0 1

1 1 0

Output = x1 xor x2

Logistic and other thresholds

  Only update the weights when we get an
example wrong

€

wi = wi −α xi (y j − h(x))
For each dimension i in the weight vector:

€

d
dwi

error(w)

Logistic and other thresholds

Any problem with using
the threshold function?

€

wi = wi −α d
dwi

error(w)

Logistic and other thresholds

We’ll use a sigmoid, which
approximates a threshold but has a
well defined derivative

€

wi = wi −α d
dwi

error(w)

€

wi = wi −α xi g'(w ⋅ x)(y - h(x))

Now have a term for
the slope at that point

11/8/10

18

Learning in Multilayer Networks

 Similar idea as perceptrons

 Examples are presented to the network

  If the network computes an output that
matches the desired, nothing is done

  If there is an error, then the weights are
adjusted to balance the error

Learning in multilayer networks
  Key idea for perceptron learning: if the perceptron’s

output is different than the expected output, update the
weights

  Challenge: for multilayer networks, we don’t know what
the expected output/error is for the internal nodes

perceptron multi-layer network

expected output?

Backpropagation

€

wi = wi −α g'(w ⋅ xi) (y - h(x)) x i

Say we get it wrong, and we now want to
update the weights

€

wi = wi −α g'(w ⋅ ai) (y - h(x)) ai

the inputs to the output node

Backpropagation
Say we get it wrong, and we now want to
update the weights

“back-propagate” the error:

Assume all of these nodes were
responsible for some of the error

How can we figure out how much they
were responsible for?

11/8/10

19

Backpropagation
Say we get it wrong, and we now want to
update the weights

error

w1

w2 w3

error for node i is: wi error

Backpropagation

€

wi = wi −α g'(w ⋅ x) (y - h(x)) x i

Say we get it wrong, and we now want to
update the weights

€

wi = wi −α g'(w ⋅ ai) error ai

the nodes fraction
of the error

Backpropagation

  calculate the error at the output layer

  backpropagate the error up the network
  if a node has multiple output nodes, sum the error of

these nodes

  Update the weights based on these errors

  Can be shown that this is the appropriate thing
to do based on our assumptions

  That said, many neuroscientists don’t think the
brain does backpropagation of errors

Neural network regression

 Given enough hidden nodes, you can
learn any function with a neural network

 Challenges:
 overfitting

 picking a network structure (like picking our
Bayes net structure)

 can require a lot of tweaking of parameters,
preprocessing, etc.

11/8/10

20

Popular for digit recognition and many computer vision tasks

http://yann.lecun.com/exdb/mnist/

Cog sci people like NNs

  Expression/emotion recognition
 Gary Cottrell et al

  Language learning

Interpreting Satellite Imagery for
Automated Weather Forecasting Summary

 Perceptrons, one layer networks, are
insufficiently expressive

 Multi-layer networks are sufficiently
expressive and can be trained by error
back-propogation

 Many applications including speech,
driving, hand written character recognition,
fraud detection, driving, etc.

