
CS160 - Assignment 4

Due: Friday Oct. 30, 6pm

For our final assignment you will be implementing a few evaluation metrics
and then examine the performance of our IR system and the impact of dif-
ferent parameter settings. The evaluation process is critical to any research
project and this assignment will be good practice in preparation for your
final projects.

As always, read through this whole document before starting.

1. Data

For ease of experimentation and availability, we’re using the Cran-
field test collection. The data set is small (1400 documents and 225
queries), but does have a full enumeration of all relevant documents
for each query. For our current purposes, this will be sufficient, but I
will look into obtaining some larger data sets for use with your final
projects.

The data can be found at: /common/cs/cs160/assign4/data/. In
there you will find three files:

• cranfield.document: The list of documents for our corpus (see
search.data.CranfieldReader below for reading the data).

• cranfield.queries: The list of queries we’ll be evaluating our
system with (see search.evaluation.BasicQueryReader below for
reading the queries).

• cranfield.query.relevance: The relevance judgements for the
queries. Each entry in the file contains three integers. The first
number is the line number of the query. The second number is
the document ID. The third number is a relevance score from 1 to
4, with 1 being the most relevant and 4 being the least. For our

1



purposes we will only consider documents to be relevant or not
relevant. A relevant document is any document with a score of 1

or 2. I have left the other data in there if you want to experiment
further.

For example, for the first query, the relevant documents are
184, 29, 31, 57, 378, 859, 875.

2. Changes to the code base

I made a few changes to the code base to get things in better shape
and also added some I/O functionality to get you started on this as-
signment. As before, you are welcome to use your existing code, but
you should make sure there are not any existing bugs. In addition, you
will also need to copy over a few of your existing files (though mostly
just for I/O) to stay compliant with the current code base.

• Created a new subpackage search.evaluation for use in this as-
signment.

– search.evaluation.BasicQueryReader can be used to read the
provided query file.

– search.data.CranfieldReader can be used to read the cranfield
data set documents.

• Created a new subpackage search.data which contains all of the
document reading classes.

– Added the class BasicDcoumentReader which makes adding
new readers easier. To create a new reader you just need
to extend BasicDocumentReader and then override the read-
NextDocText method (see search.data.TDTReader for an ex-
ample)

– Added a reset() method to data.DocumentReader interface.
Callling reset should cause the reader to start over again at
the beginning of the data set.

• Added functionality to support query processing using tokenizers
and token normalization

– Added a Query class which is used to represent a user query.

– Index.rankedQuery now takes a query

– Search now takes a Tokenizer and TokenProcessor. The same
tokenizer and token processor used with the document reader
should be used with the search engine.

2



3. What to implement

The skeleton code for this project can be found at /common/cs/cs160/assign4/.

You will be implementing four different evaluation metrics to play with
on our data. The method skeletons are found in search.evaluation.Evaluator.
For programming, this is technically all you’ll need to handin. How-
ever, you will also need to run some experiments. Below are a sug-
gested set of steps to implement.

(a) Using search.data.CranfieldReader, figure out how to create a
new index over the cranfield corpus.

(b) Using search.evaluator.BasicQueryReader, figure out how to read
in all of the queries.

(c) You should now be able to issue all of the test queries to the
corpus and make sure things are working right.

(d) Look at the relevance file. Take a look at search.evaluation.Evaluator
and see what is expected to be passed to the evaluation functions.
Write a class or method to read in the relevance data.

(e) Write evaluation methods.

4. Experimentation and Writeup

Now that we have some methods for evaluating our system, we can
see how well it’s doing and we can see what effect our different system
variations have on performance. As I mentioned in the introduction,
this is a common problem to encounter when doing research.

For your write-up, investigate the performance of your system. Your
write-up should be one to two pages of well organized text that de-
scribes overall how the system performs and examines a variety of
parameter settings. Include a table or two showing some of your re-
sults. Since the actual programming part of this assignment should be
relatively light, I expect you to spend some quality time playing with
the system and analyzing the results.

You should discuss some, but not necessarily all of the following: how
does tokenization affect performance? How do the token normalization
affect performance? How do the tf-idf parameters affect performance?

3



What are the optimal settings for the parameters? How do the dif-
ferent evaluation metrics differ/perform? What types of parameters
are the most important to examine? Are any results counter-intuitive?

Note, it’s likely you’ll have to write some extra code to automate the
experimentation process. I strongly recommend doing this since you’ll
be trying many variations of different parameters.

All of the evaluation methods you implemented are query-level met-
rics. To get an overall score for a system, the easiest thing to do is
just to average the scores over all of the queries. This isn’t perfect,
but will suffice for now.

As an aside, the data set we’re playing with is already lowercased, so
that feature will not have an impact and will not be explored.

When grading the write-up I will look for the following:

• Is it well organized?

• Do you provide sufficient data?

• Do you analyze the data provided?

• Did you tackle a number of the questions above?

• Is the writing clear, grammatically correct, etc.?

• Are your arguments compelling?

• Does it appear that you spent some time and effort playing with
the data and thinking about the results?

5. Hints/Comments

• To debug your evaluation metrics, you can simply pass in data
and make sure it’s doing the right thing.

• Both precision and recall share a common functionality.

• The definition of rPrecision can be found in the book.

• Both rPrecision and MAP leverage the precision function.

• Plan on spending some time on the writeup since it does involve
running a number of experiments.

4



• I’ll say it again, automate your experimentation process!

6. What to turn in and how to turn it in

• What to turn in:

– A “jar” file of your code, which should contain all classes re-
quired to get your code working, including the original files
I provided. See the assignment 1 writeup for details on cre-
ating a jar file. Make sure that you check the box to include
the source in your jar.

– Your project writeup

• How to turn it in

See the course web side for details (it’s the same procedure as
last time).

5


